Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE (Open Access)

Photochemical reactions of methyl and ethyl nitrate: a dual role for alkyl nitrates in the nitrogen cycle

Shuzhong He A , Zhongming Chen A B and Xuan Zhang A
+ Author Affiliations
- Author Affiliations

A State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Haidian District, Beijing 100871, P. R. China.

B Corresponding author. Email: zmchen@pku.edu.cn

Environmental Chemistry 8(6) 529-542 https://doi.org/10.1071/EN10004
Submitted: 18 January 2010  Accepted: 16 September 2011   Published: 15 November 2011

Journal Compilation © CSIRO Publishing JYEAR Open Access CC BY-NC-ND

Environmental context. Alkyl nitrates are considered to be important intermediates in the atmospheric hydrocarbons–nitrogen oxides–ozone cycle, which significantly determines air quality and nitrogen exchange between the atmosphere and the Earth’s surfaces. The present laboratory study investigates reaction products of alkyl nitrates to elucidate their photochemical reaction mechanisms in the atmosphere. The results provide a better understanding of the role played by alkyl nitrates in the atmospheric environment.

Abstract. Alkyl nitrates (ANs) are important nitrogen-containing organic compounds and are usually considered to be temporary reservoirs of reactive nitrogen NOx (NO2 and NO) in the atmosphere, although their atmospheric fates are incompletely understood. Here a laboratory study of the gas-phase photolysis and OH-initiated reactions of methyl nitrate (CH3ONO2) and ethyl nitrate (C2H5ONO2), as models of atmospheric ANs, is reported with a focus on elucidating the detailed photochemical reaction mechanisms of ANs in the atmosphere. A series of intermediate and end products were well characterised for the first time from the photochemical reactions of methyl and ethyl nitrate conducted under simulated atmospheric conditions. Notably, for both the photolysis and OH-initiated reactions of CH3ONO2 and C2H5ONO2, unexpectedly high yields of HNO3 (photochemically non-reactive nitrogen) were found and also unexpectedly high yields of peroxyacyl nitrates (RC(O)OONO2, where R = H, CH3, CH3CH2,…) (reactive nitrogen) have been found as CH3C(O)OONO2 in the C2H5ONO2 reaction or proposed as HC(O)OONO2 in the CH3ONO2 reaction. Although the yields of HNO3 from the ANs under ambient conditions are likely variable and different from those obtained in the laboratory experiments reported here, the results imply that the ANs could potentially serve as a sink for reactive nitrogen in the atmosphere. The potential for this dual role of organic nitrates in the nitrogen cycle should be considered in the study of air quality and nitrogen exchange between the atmosphere and surface. Finally, an attempt was made to estimate the production of HNO3 and peroxyacyl nitrates derived from NOx by ANs as intermediates in the atmosphere.

Additional keywords: nitric acid, OH-initiated reaction, peroxyacetyl nitrate, photolysis.


References

[1]  B. J. Finlayson-Pitts, J. N. Pitts, Tropospheric air pollution: ozone, airborne toxics, polycyclic aromatic hydrocarbons, and particles. Science 1997, 276, 1045.
Tropospheric air pollution: ozone, airborne toxics, polycyclic aromatic hydrocarbons, and particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjt12ls7s%3D&md5=f365eade2da0a89f1f58c141fe6ab513CAS |

[2]  D. A. Day, M. B. Dillon, P. J. Wooldridge, J. A. Thornton, R. S. Rosen, E. C. Wood, R. C. Cohen, On alkyl nitrates, O3, and the ‘missing NOy’. J. Geophys. Res. 2003, 108, 4501.
On alkyl nitrates, O3, and the ‘missing NOy’.Crossref | GoogleScholarGoogle Scholar |

[3]  R. S. Rosen, E. C. Wood, P. J. Wooldridge, J. A. Thornton, D. A. Day, W. Kuster, E. J. Williams, B. T. Jobson, R. C. Cohen, Observations of total alkyl nitrates during Texas Air Quality Study 2000: implications for O3 and alkyl nitrate photochemistry. J. Geophys. Res. 2004, 109, D07303.
Observations of total alkyl nitrates during Texas Air Quality Study 2000: implications for O3 and alkyl nitrate photochemistry.Crossref | GoogleScholarGoogle Scholar |

[4]  R. S. Russo, Y. Zhou, K. B. Haase, O. W. Wingenter, E. K. Frinak, H. Mao, R. W. Talbot, B. C. Sive, Temporal variability, sources, and sinks of C1–C5 alkyl nitrates in coastal New England. Atmos. Chem. Phys. 2010, 10, 1865.
Temporal variability, sources, and sinks of C1–C5 alkyl nitrates in coastal New England.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjsl2qs7Y%3D&md5=a9089f09df14f6b023f402d339e0426aCAS |

[5]  I. J. Simpson, T. Wang, H. Guo, Y. H. Kwok, F. Flocke, E. Atlas, S. Meinardi, F. S. Rowland, D. R. Blake, Long-term atmospheric measurements of C1–C5 alkyl nitrates in the Pearl River Delta region of southeast China. Atmos. Environ. 2006, 40, 1619.
Long-term atmospheric measurements of C1–C5 alkyl nitrates in the Pearl River Delta region of southeast China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Giu78%3D&md5=4edd11c8ee1c6febf03ced6140fb76a8CAS |

[6]  J. W. Bottenheim, L. A. Barrie, E. Atlas, The partitioning of nitrogen oxides in the lower Arctic troposphere during spring 1988. J. Atmos. Chem. 1993, 17, 15.
The partitioning of nitrogen oxides in the lower Arctic troposphere during spring 1988.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmtV2nsrs%3D&md5=98e58791f0221d3597ccfa269dcf2102CAS |

[7]  E. Atlas, W. Pollock, J. Greenberg, L. Heidt, A. M. Thompson, Alkyl nitrates, nonmethane hydrocarbons, and halocarbon gases over the equatorial Pacific Ocean during SAGA 3. J. Geophys. Res. 1993, 98, 16933.
Alkyl nitrates, nonmethane hydrocarbons, and halocarbon gases over the equatorial Pacific Ocean during SAGA 3.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXosFSltA%3D%3D&md5=49793ae2934704cf02d9bd642ba15e66CAS |

[8]  K. Muthuramu, P. B. Shepson, J. W. Bottenheim, B. T. Jobson, H. Niki, K. G. Anlauf, Relationships between organic nitrates and surface ozone destruction during Polar Sunrise experiment 1992. J. Geophys. Res. 1994, 99, 25369.
Relationships between organic nitrates and surface ozone destruction during Polar Sunrise experiment 1992.Crossref | GoogleScholarGoogle Scholar |

[9]  B. A. Ridley, E. L. Atlas, J. G. Walega, G. L. Kok, T. A. Staffelbach, J. P. Greenberg, F. E. Grahek, P. G. Hess, D. D. Montzka, Aircraft measurements made during the spring maximum of ozone over Hawaii: peroxides, CO, O3, NOy, condensation nuclei, selected hydrocarbons, halocarbons, and alkyl nitrates between 0.5 and 9 km altitude. J. Geophys. Res. 1997, 102, 18935.
Aircraft measurements made during the spring maximum of ozone over Hawaii: peroxides, CO, O3, NOy, condensation nuclei, selected hydrocarbons, halocarbons, and alkyl nitrates between 0.5 and 9 km altitude.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlvFKks74%3D&md5=ed7bbb4d0595144973bfbf990b0dfcf2CAS |

[10]  A. E. Jones, R. Weller, A. Minikin, E. W. Wolff, W. T. Sturges, H. P. McIntyre, S. R. Leonard, O. Schrems, S. Bauguitte, Oxidized nitrogen chemistry and speciation in the Antarctic troposphere. J. Geophys. Res. 1999, 104, 21355.
Oxidized nitrogen chemistry and speciation in the Antarctic troposphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmsFOgu7k%3D&md5=9412c7827508ae95335b7bdd05889ff6CAS |

[11]  R. Talbot, J. Dibb, E. Scheuer, G. Seid, R. Russo, S. Sandholm, D. Tan, H. Singh, D. Blake, N. Blake, E. Atlas, G. Sachse, C. Jordan, M. Avery, Reactive nitrogen in Asian continental outflow over the western Pacific: results from the NASA transport and chemical evolution over the Pacific (TRACE-P) airborne mission. J. Geophys. Res. 2003, 108, 8803.
Reactive nitrogen in Asian continental outflow over the western Pacific: results from the NASA transport and chemical evolution over the Pacific (TRACE-P) airborne mission.Crossref | GoogleScholarGoogle Scholar |

[12]  N. J. Blake, D. R. Blake, A. L. Swanson, E. Atlas, F. Flocke, F. S. Rowland, Latitudinal, vertical, and seasonal variations of C1–C4 alkyl nitrates in the troposphere over the Pacific Ocean during PEM-Tropics A and B: oceanic and continental sources. J. Geophys. Res. 2003, 108, 8242.
Latitudinal, vertical, and seasonal variations of C1–C4 alkyl nitrates in the troposphere over the Pacific Ocean during PEM-Tropics A and B: oceanic and continental sources.Crossref | GoogleScholarGoogle Scholar |

[13]  N. J. Blake, D. R. Blake, B. C. Sive, A. S. Katzenstein, S. Meinardi, O. W. Wingenter, E. L. Atlas, F. Flocke, B. A. Ridley, F. S. Rowland, The seasonal evolution of NMHCs and light alkyl nitrates at middle to high northern latitudes during TOPSE. J. Geophys. Res. 2003, 108, 8359.
The seasonal evolution of NMHCs and light alkyl nitrates at middle to high northern latitudes during TOPSE.Crossref | GoogleScholarGoogle Scholar |

[14]  A. E. Perring, T. H. Bertram, P. J. Wooldridge, A. Fried, B. G. Heikes, J. Dibb, J. D. Crounse, P. O. Wennberg, N. J. Blake, D. R. Blake, W. H. Brune, H. B. Singh, R. C. Cohen, Airborne observations of total RONO2: new constraints on the yield and lifetime of isoprene nitrates. Atmos. Chem. Phys. 2009, 9, 1451.
Airborne observations of total RONO2: new constraints on the yield and lifetime of isoprene nitrates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntFKhu70%3D&md5=835ca6962e63669f8027b7c409047d78CAS |

[15]  P. Giacopelli, K. Ford, C. Espada, P. B. Shepson, Comparison of the measured and simulated isoprene nitrate distributions above a forest canopy. J. Geophys. Res. 2005, 110, D01304.
Comparison of the measured and simulated isoprene nitrate distributions above a forest canopy.Crossref | GoogleScholarGoogle Scholar |

[16]  J. W. Grossenbacher, D. J. Barket, P. B. Shepson, M. A. Carroll, K. Olszyna, E. Apel, A comparison of isoprene nitrate concentrations at two forest-impacted sites. J. Geophys. Res. 2004, 109, D11311.
A comparison of isoprene nitrate concentrations at two forest-impacted sites.Crossref | GoogleScholarGoogle Scholar |

[17]  F. Flocke, E. Atlas, S. Madronich, S. M. Shauffler, K. Aikin, J. J. Margitan, T. P. Bui, Observations of methyl nitrate in the lower stratosphere during STRAT: implications for its gas phase production mechanisms. Geophys. Res. Lett. 1998, 25, 1891.
Observations of methyl nitrate in the lower stratosphere during STRAT: implications for its gas phase production mechanisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXktVSrtbo%3D&md5=6d34a3667c9a5e5e0b66165c04e5d1acCAS |

[18]  K. R. Darnall, W. P. L. Carter, A. M. Winer, A. C. Lloyd, J. N. Pitts, Importance of RO2+NO in alkyl nitrate formation from C4–C6 alkane photooxidations under simulated atmospheric conditions. J. Phys. Chem. A 1976, 80, 1948.
| 1:CAS:528:DyaE28XkvFymtbY%3D&md5=74d2c1fed3a09f923450de4b60ea6c67CAS |

[19]  R. Atkinson, S. M. Aschmann, W. P. L. Carter, A. M. Winer, J. N. Pitts, Alkyl nitrate formation from the NOx-air photooxidations of C2–C8 n-alkanes. J. Phys. Chem. A 1982, 86, 4563.
| 1:CAS:528:DyaL38XlvVOgtLg%3D&md5=89277f14bfa38ef7be682097848fdcf2CAS |

[20]  D. A. Day, D. K. Farmer, A. H. Goldstein, P. J. Wooldridge, C. Minejima, R. C. Cohen, Observations of NOx, ΣPNs, ΣANs, and HNO3 at a rural site in the California Sierra Nevada Mountains: summertime diurnal cycles. Atmos. Chem. Phys. 2009, 9, 4879.
Observations of NOx, ΣPNs, ΣANs, and HNO3 at a rural site in the California Sierra Nevada Mountains: summertime diurnal cycles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGitr%2FF&md5=d7055ac6a5487bda4098b37fb6dcbf58CAS |

[21]  S. P. Sander, R. R. Friedl, A. R. Ravishankara, D. M. Golden, C. E. Kolb, M. J. Kurylo, M. J. Molina, G. K. Moortgat, H. Keller-Rudek, B. J. Finlayson-Pitts, P. H. Wine, R. E. Huie, V. L. Orkin, Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies Evaluation Number 15, JPL Publication 06-2 2006 (Jet propulsion laboratory: Pasadena, CA).

[22]  F. Flocke, T. A. Volz, H. J. Buers, W. Patz, H. J. Garthe, D. Kley, Long-term measurements of alkyl nitrates in southern Germany 1. General behavior and seasonal and diurnal variation. J. Geophys. Res. 1998, 103, 5729.
Long-term measurements of alkyl nitrates in southern Germany 1. General behavior and seasonal and diurnal variation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXit1Smurk%3D&md5=f80180e48cdedd1d89781d89ec7f8bb1CAS |

[23]  Z. M. Chen, C. X. Wang, Rate constants of the gas-phase reactions of CH3OOH with O3 and NOx at 293 K. Chem. Phys. Lett. 2006, 424, 233.
Rate constants of the gas-phase reactions of CH3OOH with O3 and NOx at 293 K.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xls1GrtLw%3D&md5=feb3152f4f38ce7e6f2a3bf023bea161CAS |

[24]  C. X. Wang, Z. M. Chen, An experimental study for rate constants of the gas phase reactions of CH3CH2OOH with OH radicals, O3, NO2 and NO. Atmos. Environ. 2008, 42, 6614.
An experimental study for rate constants of the gas phase reactions of CH3CH2OOH with OH radicals, O3, NO2 and NO.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFSqtrzJ&md5=d7e68e0d6ce630d6c247f0dc926b2f79CAS |

[25]  S. M. Fan, D. J. Jacob, D. L. Mauzerall, J. D. Bradshaw, S. T. Sandholm, D. R. Blake, H. B. Singh, R. W. Talbot, G. L. Gregory, G. W. Sachse, Origin of thropospheric NOx over sub-Arctic eastern Canada in summer. J. Geophys. Res. 1994, 99, 16867.
Origin of thropospheric NOx over sub-Arctic eastern Canada in summer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmvVeqsb8%3D&md5=9eba09f420f1e411d7e38c6550c971ecCAS |

[26]  J. G. Walega, B. A. Ridley, S. Madronic, F. E. Grahek, J. D. Shetter, T. D. Sauvain, C. J. Hahn, J. T. Merrill, B. A. Bodhaine, E. Robinson, Observations of peroxyacetyl nitrate, peroxyproprionyl nitrate, methyl nitrate and ozone during the Mauna Loa Observatory photochemistry experiment. J. Geophys. Res. 1992, 97, 10311.
| 1:CAS:528:DyaK3sXisFaltg%3D%3D&md5=f69bbcfa0eb300c550cf9f34c0926170CAS |

[27]  A. L. Chuck, S. M. Turner, P. S. Liss, Direct evidence for a marine source of C1 and C2 alkyl nitrates. Science 2002, 297, 1151.
Direct evidence for a marine source of C1 and C2 alkyl nitrates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmsVOhsr4%3D&md5=a551bb4713b191af948f69f361c3baacCAS |

[28]  J. R. Barker, D. M. Golden, Master equation analysis of pressure-dependent atmospheric reactions. Chem. Rev. 2003, 103, 4577.
Master equation analysis of pressure-dependent atmospheric reactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotlaqs7k%3D&md5=a0c5cade73d7572dfb188a04800cb825CAS |

[29]  I. J. Simpson, S. Meinardi, D. R. Blake, N. J. Blake, F. S. Rowland, E. Atlas, F. Flocke, A biomass burning source of C1–C4 alkyl nitrates. Geophys. Res. Lett. 2002, 29, 2168.
A biomass burning source of C1–C4 alkyl nitrates.Crossref | GoogleScholarGoogle Scholar |

[30]  K. Ballschmiter, A marine source for alkyl nitrates. Science 2002, 297, 1127.
A marine source for alkyl nitrates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmsVOiur0%3D&md5=4b1b0c4c908aae131e0bc27a5435517bCAS |

[31]  M. A. Hiskey, K. R. Brower, J. C. Oxley, Thermal decomposition of nitrate esters. J. Phys. Chem. A 1991, 95, 3955.
| 1:CAS:528:DyaK3MXit1yhsL4%3D&md5=3f979935adcb2395eb446769794cb79bCAS |

[32]  P. Politzer, J. M. Seminario, M. C. Concha, A. G. Zacarias, Density-functional investigation of some decomposition routes of methyl nitrate. Int. J. Quantum Chem. 1997, 64, 205.
Density-functional investigation of some decomposition routes of methyl nitrate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXkvVSiu78%3D&md5=fabee11bbee52365830bd6787713719eCAS |

[33]  W. T. Luke, R. R. Dickerson, L. J. Nunnermacker, Direct measurements of the photolysis rate cofficients and Henry’s Law constants of several alkyl nitrates. J. Geophys. Res. 1989, 94, 14905.
Direct measurements of the photolysis rate cofficients and Henry’s Law constants of several alkyl nitrates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXltlGqtrY%3D&md5=4475b9a3b12cd86bf8ecd8c2d2aab270CAS |

[34]  R. E. Rebbert, Primary processes in the photolysis of ethyl nitrate. J. Phys. Chem. A 1963, 67, 1923.
| 1:CAS:528:DyaF3sXks1Kruro%3D&md5=e0f3c575020104a210d60ccc8a8824ceCAS |

[35]  P. Gray, G. T. Rogers, The explosion and decomposition of methyl nitrate in the gas phase. J. Chem. Soc., Faraday Trans. 1954, 50, 28.
The explosion and decomposition of methyl nitrate in the gas phase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2cXlvFajsA%3D%3D&md5=72ac2a144ff65aba14f7f9ce3c07fcb2CAS |

[36]  J. A. Gray, D. W. G. Style, The photolysis of methyl nitrate. J. Chem. Soc., Faraday Trans. 1953, 49, 52.
The photolysis of methyl nitrate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG3sXktlOmsA%3D%3D&md5=cff4a86e1c759bb0ead5e4416c801393CAS |

[37]  A. M. Renlund, W. M. Trott, ArF laser-induced decomposition of simple energetic molecules. Chem. Phys. Lett. 1984, 107, 555.
ArF laser-induced decomposition of simple energetic molecules.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXltFegur4%3D&md5=db72402ad1b8cdbcb93ad834c661ac07CAS |

[38]  L. Zhu, C. F. Ding, Temperature dependence of the near UV absorption spectra and photolysis products of ethyl nitrate. Chem. Phys. Lett. 1997, 265, 177.
Temperature dependence of the near UV absorption spectra and photolysis products of ethyl nitrate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmsVaiug%3D%3D&md5=624aae6872edd1e6c46b3d06edb11db7CAS |

[39]  R. K. Talukdar, J. B. Burkholder, M. Hunter, M. K. Gilles, J. M. Roberts, A. R. Ravishankara, Atmospheric fate of several alkyl nitrates. Part 2: UV absorption cross-sections and photodissociation quantum yields. J. Chem. Soc., Faraday Trans. 1997, 93, 2797.
Atmospheric fate of several alkyl nitrates. Part 2: UV absorption cross-sections and photodissociation quantum yields.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlsl2lt7s%3D&md5=0114ac94f1533f24b303c4d9fa1111c7CAS |

[40]  J. S. Gaffney, R. Fajer, G. I. Senum, J. H. Lee, Measurement of the reactivity of OH with methyl nitrate: Implications for prediction of alkyl nitrate-OH reaction rates. Int. J. Chem. Kinet. 1986, 18, 399.
Measurement of the reactivity of OH with methyl nitrate: Implications for prediction of alkyl nitrate-OH reaction rates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXkvFCjsw%3D%3D&md5=04fd998f93036403b257294dcf0ec017CAS |

[41]  O. J. Nielsen, H. W. Sidebottom, M. D. J. Treacy, An absolute- and relative-rate study of the gas-phase reaction of OH radicals and Cl atoms with n-alkyl nitrates. Chem. Phys. Lett. 1991, 178, 163.
An absolute- and relative-rate study of the gas-phase reaction of OH radicals and Cl atoms with n-alkyl nitrates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXktVOrsbs%3D&md5=0b91804ceaf8b2454b73f63064226385CAS |

[42]  M. Kakesu, H. Bandow, N. Takenaka, Y. Maeda, N. Washida, Kinetic measurements of methyl and ethyl nitrate reactions with OH radicals. Int. J. Chem. Kinet. 1997, 29, 933.
Kinetic measurements of methyl and ethyl nitrate reactions with OH radicals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnvFelsr4%3D&md5=5705d334cd32b4bcc9f57f07dfc4f3d0CAS |

[43]  D. E. Shallcross, P. Biggs, C. E. Canosa-Mas, K. C. Clemitshaw, M. G. Harrison, M. R. L. Alanon, J. A. Pyle, A. Vipond, R. P. Wayne, Rate constants for the reaction between OH and CH3ONO2 and C2H5ONO2 over a range of pressure and temperature. J. Chem. Soc., Faraday Trans. 1997, 93, 2807.
Rate constants for the reaction between OH and CH3ONO2 and C2H5ONO2 over a range of pressure and temperature.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlsl2lt7g%3D&md5=f8c79171558d0696f12390c4275ba313CAS |

[44]  R. K. Talukdar, S. C. Herndon, J. B. Burkholder, J. M. Roberts, A. R. Ravishankara, Atmospheric fate of several alkyl nitrates. Part 1: rate coefficients of the reactions of alkyl nitrates with isotopically labelled hydroxyl radicals. J. Chem. Soc., Faraday Trans. 1997, 93, 2787.
Atmospheric fate of several alkyl nitrates. Part 1: rate coefficients of the reactions of alkyl nitrates with isotopically labelled hydroxyl radicals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlsl2lt7o%3D&md5=91370936aeb1270ec0f8e62dbf4b574aCAS |

[45]  E. Atlas, Evidence for ≥C3 alkyl nitrates in rural and remote atmospheres. Nature 1988, 331, 426.
Evidence for ≥C3 alkyl nitrates in rural and remote atmospheres.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhtVSgtL0%3D&md5=89757601e76a4ea8b66e394c2fbee6cfCAS |

[46]  K. C. Clemitshaw, J. Williams, O. V. Rattigan, D. E. Shallcross, K. S. Law, R. A. Cox, Gas-phase ultraviolet absorption cross-sections and atmospheric lifetimes of several C2–C5 alkyl nitrates. J. Photoch. Photobiol. A: Chem. 1997, 102, 117.
Gas-phase ultraviolet absorption cross-sections and atmospheric lifetimes of several C2–C5 alkyl nitrates.Crossref | GoogleScholarGoogle Scholar |

[47]  J. M. Roberts, S. B. Bertman, D. D. Parrish, F. C. Fehsenfeld, B. T. Jobson, H. Niki, Measurement of alkyl nitrates at Chebogue Point, Nova Scotia during the 1993 North Atlantic Regional Experiment (NARE) intensive. J. Geophys. Res. 1998, 103, 13569.
Measurement of alkyl nitrates at Chebogue Point, Nova Scotia during the 1993 North Atlantic Regional Experiment (NARE) intensive.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXktlektrY%3D&md5=1d7ace7e0052f07a7b798aa6eaa77457CAS |

[48]  G. Desseigne, Process for the preparation of methyl nitrate. Memorial des Poudres 1948, 30, 59.
| 1:CAS:528:DyaG3cXjsl2itA%3D%3D&md5=0e93f3d4047b184f23bd8770cc2ca998CAS |

[49]  Z. M. Chen, S. Li, F. Shi, X. Y. Tang, Study on the yield of peroxides from atmospheric reaction of CH3C(O)CH=CH2 with O3 by long path FTIR. Spectrosc. Spect. Anal. 2003, 23, 742.
| 1:CAS:528:DC%2BD3sXnt1eitLw%3D&md5=ee58b048d8c012f90b61a4b41fcb7ed2CAS |

[50]  H. L. Wang, X. Zhang, Z. M. Chen, Development of DNPH/HPLC method for the measurement of carbonyl compounds in the aqueous phase: applications to laboratory simulation and field measurement. Environ. Chem. 2009, 6, 389.
Development of DNPH/HPLC method for the measurement of carbonyl compounds in the aqueous phase: applications to laboratory simulation and field measurement.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFSkurnN&md5=687688139edc943662fad22098d6be83CAS |

[51]  Z. M. Chen, C. Y. Jie, S. Li, H. L. Wang, C. X. Wang, J. R. Xu, W. Hua, Heterogeneous reaction of methacrolein and methyl vinyl ketone: kinetics and mechanisms of uptake and ozonolysis on silicon dioxide. J. Geophys. Res. 2008, 113,
Heterogeneous reaction of methacrolein and methyl vinyl ketone: kinetics and mechanisms of uptake and ozonolysis on silicon dioxide.Crossref | GoogleScholarGoogle Scholar |

[52]  Z. M. Chen, H. L. Wang, L. H. Zhu, C. X. Wang, C. Y. Jie, W. Hua, Aqueous-phase ozonolysis of methacrolein and methyl vinyl ketone: a potentially important source of atmospheric aqueous oxidants. Atmos. Chem. Phys. 2008, 8, 2255.
Aqueous-phase ozonolysis of methacrolein and methyl vinyl ketone: a potentially important source of atmospheric aqueous oxidants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvVSksbo%3D&md5=8955468f9379153b73eeb4ab5d1cb87fCAS |

[53]  J. D. C. Brand, T. M. Cawthon, The vibrational spectrum of methyl nitrate. J. Am. Chem. Soc. 1955, 77, 319.
The vibrational spectrum of methyl nitrate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2MXit1OmtA%3D%3D&md5=695b9ce0a698891c0a75979844caa1a7CAS |

[54]  B. W. Gay, R. C. Noonan, J. J. Bufalini, P. L. Hanst, Photochemical synthesis of peroxyacyl nitrates in gas phase via chlorine-aldehyde reaction. Environ. Sci. Technol. 1976, 10, 82.
Photochemical synthesis of peroxyacyl nitrates in gas phase via chlorine-aldehyde reaction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXmtFGrsrs%3D&md5=80d814c12211b0e8acea694157e324d8CAS |

[55]  P. L. Hanst, B. W. Gay, Photochemical reactions among formaldehyde, chlorine, and nitrogen dioxide in air. Environ. Sci. Technol. 1977, 11, 1105.
Photochemical reactions among formaldehyde, chlorine, and nitrogen dioxide in air.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXktFSnsA%3D%3D&md5=57cfa201d7020c9b269344853a972c7bCAS |

[56]  B. J. Finlayson-Pitts, J. N. Pitts Jr, Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications 2000 (Academic press: New York).

[57]  K. A. Ramazan, L. M. Wingen, Y. Miller, G. M. Chaban, R. B. Gerber, S. S. Xantheas, B. J. Finlayson-Pitts, New experimental and theoretical approach to the heterogeneous hydrolysis of NO2: key role of molecular nitric acid and its complexes. J. Phys. Chem. A 2006, 110, 6886.
New experimental and theoretical approach to the heterogeneous hydrolysis of NO2: key role of molecular nitric acid and its complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhs1Cju78%3D&md5=07ec0ad41d634a62292a9c0c06f6f4d2CAS |

[58]  P. G. Carbajo, A. J. Orr-Ewing, NO2 quantum yields from ultraviolet photodissociation of methyl and isopropyl nitrate. Phys. Chem. Chem. Phys. 2010, 12, 6084.
NO2 quantum yields from ultraviolet photodissociation of methyl and isopropyl nitrate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvVWrs7Y%3D&md5=babdc4f835591cbed5eedc28dfd0046aCAS |

[59]  J. W. Bozzelli, A. M. Dean, Hydrocarbon radical reactions with O2: comparison of allyl, formyll, and vinyl to ethyl. J. Phys. Chem. 1993, 97, 4427.
Hydrocarbon radical reactions with O2: comparison of allyl, formyll, and vinyl to ethyl.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXitlegsr0%3D&md5=b3b11d915892d3b7c7a215390ce0e377CAS |

[60]  M. Martínez-Ávila, J. Peiró-García, V. M. Ramírez-Ramírez, I. Nebot-Gil, Ab inito study on the mechanism of the HCO + O2 → HO2 + CO reaction. Chem. Phys. Lett. 2003, 370, 313.
Ab inito study on the mechanism of the HCO + O2 → HO2 + CO reaction.Crossref | GoogleScholarGoogle Scholar |

[61]  F. Su, J. G. Calvert, J. H. Shaw, H. Niki, P. D. Maker, C. M. Savage, L. D. Breitenbach, Spectroscopic and kinetic studies of a new metastable species in the photo-oxidation of gaseous formaldehyde. Chem. Phys. Lett. 1979, 65, 221.
Spectroscopic and kinetic studies of a new metastable species in the photo-oxidation of gaseous formaldehyde.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXjtFyqsQ%3D%3D&md5=0493f0c2f6711ce0c13f0706be0fe73aCAS |

[62]  R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, J. Troe, Evaluated kinetic and photochemical data for atmospheric chemistry: volume I – gas phase reactions of Ox, HOx, NOx and SOx species. Atmos. Chem. Phys. 2004, 4, 1461.
Evaluated kinetic and photochemical data for atmospheric chemistry: volume I – gas phase reactions of Ox, HOx, NOx and SOx species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvFaqtrY%3D&md5=758708ae5c8bd98235897db33583dc97CAS |

[63]  C. M. Roehl, S. A. Nizkorodov, H. Zhang, G. A. Blake, P. O. Wennberg, Photodissociation of peroxynitric acid in the near-IR. J. Phys. Chem. A 2002, 106, 3766.
Photodissociation of peroxynitric acid in the near-IR.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitFahsL4%3D&md5=03e3b42548dab5cc9bfa34556282b090CAS |

[64]  R. A. Graham, A. M. Winer, J. N. Pitts, Pressure and temperature dependence of the unimolecular decomposition of HO2NO2. J. Phys. Chem. A 1978, 68, 4505.
| 1:CAS:528:DyaE1cXks1KjtrY%3D&md5=9c343ae86ff91292b65dcfc952a7dc90CAS |

[65]  E. Jiménez, T. Gierczak, H. Stark, J. B. Burkholder, A. R. Ravishankara, Reaction of OH with HO2NO2 (peroxynitric acid): rate coefficients between 218 and 335 K and product yields at 298 K. J. Phys. Chem. A 2004, 108, 1139.
Reaction of OH with HO2NO2 (peroxynitric acid): rate coefficients between 218 and 335 K and product yields at 298 K.Crossref | GoogleScholarGoogle Scholar |

[66]  T. J. Dillon, J. N. Crowley, Direct detection of OH formation in the reactions of HO2 with CH3C(O)O2 and other substituted peroxy radicals. Atmos. Chem. Phys. 2008, 8, 4877.
Direct detection of OH formation in the reactions of HO2 with CH3C(O)O2 and other substituted peroxy radicals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlCnurrP&md5=ce43a9063d4f7fd61ee47326288667b0CAS |

[67]  M. E. Jenkin, M. D. Hurley, T. J. Wallington, Investigation of the radical product channel of the CH3C(O)O2 + HO2 reaction in the gas phase. Phys. Chem. Chem. Phys. 2007, 9, 3149.
Investigation of the radical product channel of the CH3C(O)O2 + HO2 reaction in the gas phase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntlajtrY%3D&md5=3143e90162bb5f6516475c14cdea9690CAS |

[68]  M. W. Gery, G. Z. Whitten, J. P. Killus, M. C. Dodge, A photochemical kinetics mechanism for urban and regional scale computer modeling. J. Geophys. Res. 1989, 94, 12925.
A photochemical kinetics mechanism for urban and regional scale computer modeling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXlvFKrsL4%3D&md5=ac91feee86b94840cb78c2bdbffbfa4dCAS |

[69]  X. F. Yang, P. Felder, R. Huber, Photodissociation of methyl nitrate in a molecular beam. J. Phys. Chem. A 1993, 97, 10903.
| 1:CAS:528:DyaK3sXmtFert70%3D&md5=223b01b4f6fa40297f3d15a6525f5e19CAS |

[70]  Derro  E. L., Murray  C., Lester  M. I., Marshall  M. D., Photodissociation dynamics of methyl nitrate at 193 nm: energy disposal in methoxy and nitrogen dioxide products. Phys. Chem. Chem. Phys. 2007, 9, 262. [Published online ahead of print 20 November 2006]. 10.1039/B614152H

[71]  R. Atkinson, J. Arey, Atmospheric degradation of volatile organic compounds. Chem. Rev. 2003, 103, 4605.
Atmospheric degradation of volatile organic compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosVChtrs%3D&md5=a5d811d04af80983dbe4577a0291967dCAS |

[72]  D. J. Luecken, G. S. Tonnesen, J. E. Sickles, Differences in NOy speciation predicted by three photochemical mechanisms. Atmos. Environ. 1999, 33, 1073.
Differences in NOy speciation predicted by three photochemical mechanisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhtFamtbg%3D&md5=7e3e3c9133dc2e82e36c9d026a9bdd57CAS |

[73]  T. M. Butler, M. G. Lawrence, The influence of megacities on global atmospheric chemistry: a modelling study. Environ. Chem. 2009, 6, 219.
The influence of megacities on global atmospheric chemistry: a modelling study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1CjurfJ&md5=27966ad89e603ca05d6d736efbe9812cCAS |