Matrix-bound phosphine in paddy fields under a simulated increase in global atmospheric CO2
J. Zhang A , J. J. Geng A C , R. Zhang B , H. Q. Ren A and X. R. Wang AA State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China.
B School of Chemical and Environmental Science, Nanjing Normal University, Nanjing 210097, China.
C Corresponding author. Email: jjgeng@nju.edu.cn
Environmental Chemistry 7(3) 287-291 https://doi.org/10.1071/EN09164
Submitted: 25 December 2009 Accepted: 21 April 2010 Published: 22 June 2010
Environmental context. Although phosphine (PH3) is an important gaseous carrier in the phosphorus cycle, its production and environmental behaviour remain unclear. Paddy fields are thought to be one of the main sources responsible for the production and emission of PH3. Understanding the behaviour of PH3 in paddy fields under elevated CO2 concentration is crucial in understanding the phosphorus cycle and its response to rising global atmospheric CO2 concentration.
Abstract. The behaviour of matrix-bound phosphine (MBP) in paddy fields under elevated [CO2] (ambient + 200 μmol mol–1) is investigated to understand the soil phosphorus cycle and its link to increasing global atmospheric [CO2]. MBP concentrations range from 17.0 ± 5.8 to 1035 ± 331 ng kg–1. Concentrations at the transplanting and harvest stages are significantly higher than during the growing stages. The MBP level (212 ± 61 ng kg–1) under elevated [CO2] is slightly higher than under ambient [CO2] (189 ± 44 ng kg–1). Root exudates and addition of inorganic phosphate fertiliser speed up the production of MBP, whereas fast paddy growth and increasing air temperature accelerate the emission of MBP into the atmosphere. Significant positive correlations are found between MBP and inorganic phosphorus and organic matter, indicating that MBP may be produced from the microbial reduction of inorganic phosphorus in paddy fields.
Additional keywords: elevated [CO2], FACE, MBP, phosphorus cycle.
Acknowledgements
This work was supported by the National Science Foundation of Jiangsu Province (grant no. BK2008276), the National Basic Research Program of China (no. 2008CB418003), the National Science Foundation of China (no. 20607009), the International Foundation of Science (no. A/4425–1), the Key Special Program on the Science and Technology for the Pollution Control and Treatment of Water Bodies (no. 2008ZX07316–004) and Self-Research Subject of the State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education. The authors thank Wang Rui from the Institute of Atmospheric Physics and Professor Zhu Jianguo from the Institute of Soil Science, Chinese Academy of Sciences, who provided great assistance in the field investigation.
[1]
I. Dévai ,
L. Felföldy ,
I. Wittner ,
S. Plósz ,
Detection of phosphine: new aspects the phosphorus cycle in the hydrosphere.
Nature 1988
, 333, 343.
| Crossref | GoogleScholarGoogle Scholar |
[2]
D. Glindemann ,
U. Stottmeister ,
A. Bergmann ,
Free phosphine from the anaerobic biosphere.
Environ. Sci. Pollut. Res 1996
, 3, 17.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[3]
J. Roels ,
W. Verstraete ,
Occurrence and origin of phosphine in landfill gas.
Sci. Total Environ. 2004
, 327, 185.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[4]
I. Dévai ,
R. D. Delaune ,
Evidence for phosphine production and emission from Louisiana and Florida marsh soils.
Org. Geochem. 1995
, 23, 277.
| Crossref | GoogleScholarGoogle Scholar |
[5]
X. J. Niu ,
J. J. Geng ,
X. R. Wang ,
C. H. Wang ,
X. H. Gu ,
M. Edwards ,
D. Glindemann ,
Temporal and spatial distributions of phosphine in Taihu Lake, China.
Sci. Total Environ. 2004
, 323, 169.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[6]
D. Glindemann ,
M. Edwards ,
P. Kuschk ,
Phosphine gas in the upper troposphere.
Atmos. Environ. 2003
, 37, 2429.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[7]
R. B. Zhu ,
D. Glindemann ,
D. M. Kong ,
L. G. Sun ,
J. J. Geng ,
X. R. Wang ,
Phosphine in the marine atmosphere along a hemispheric course from China to Antarctica.
Atmos. Environ. 2007
, 41, 1567.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[8]
D. Glindemann ,
M. Edwards ,
J. Liu ,
P. Kuschk ,
Phosphine in soils, sludges, biogases and atmospheric implications – a review.
Ecol. Eng. 2005
, 24, 457.
| Crossref | GoogleScholarGoogle Scholar |
[9]
F. Eismann ,
D. Glindemann ,
A. Bergmann ,
P. Kuschk ,
Soil as source and sink of phosphine.
Chemosphere 1997
, 35, 523.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[10]
J. Roels ,
W. Verstraete ,
Biological formation of volatile phosphorus compounds.
Bioresour. Technol. 2001
, 79, 243.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[11]
D. Glindemann ,
M. Edwards ,
P. Morgenstern ,
Phosphine from rocks: mechanically driven phosphate reduction?
Environ. Sci. Technol. 2005
, 39, 8295.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[12]
D. Glindemann ,
F. Eismann ,
A. Bergmann ,
P. Kuschk ,
U. Stottmeister ,
Phosphine by bio-corrosion of phosphide-rich iron.
Environ. Sci. Pollut. Res. 1998
, 5, 71.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[13]
S. C. Morton ,
D. Glindemann ,
M. A. Edwards ,
Phosphates, phosphites, and phosphides in environmental samples.
Environ. Sci. Technol. 2003
, 37, 1169.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[14]
S. H. Han ,
Y. H. Zhuang ,
J. A. Liu ,
D. Glindemann ,
Phosphorus cycling through phosphine in paddy fields.
Sci. Total Environ. 2000
, 258, 195.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[15]
[16]
L. Yang ,
Y. Wang ,
K. Kobayashi ,
J. Zhu ,
J. Huang ,
H. Yang ,
Y. Wang ,
G. Dong ,
et al. Seasonal changes in the effects of free-air CO2 enrichment (FACE) on growth, morphology and physiology of rice root at three levels of nitrogen fertilization.
Glob. Change Biol. 2008
, 14, 1844.
| Crossref | GoogleScholarGoogle Scholar |
[17]
K. Inubushi ,
W. Cheng ,
S. Aonuma ,
M. M. Hoque ,
K. Kobayashi ,
S. Miura ,
H. Y. Kim ,
M. Okada ,
Effects of free-air CO2 enrichment (FACE) on CH4 emission from a rice paddy field.
Glob. Change Biol. 2003
, 9, 1458.
| Crossref | GoogleScholarGoogle Scholar |
[18]
L. Yang ,
Y. Wang ,
J. Huang ,
J. Zhu ,
H. Yang ,
G. Liu ,
H. Liu ,
G. Dong ,
J. Hu ,
Seasonal changes in the effects of free-air CO2 enrichment (FACE) on phosphorus uptake and utilization of rice at three levels of nitrogen fertilization.
Field Crops Res. 2007
, 102, 141.
| Crossref | GoogleScholarGoogle Scholar |
[19]
M. Okada ,
M. Lieffering ,
H. Nakamura ,
M. Yoshimoto ,
H. Y. Kim ,
K. Kobayashi ,
Free-air CO2 enrichment (FACE) using pure CO2 injection: system description.
New Phytol. 2001
, 150, 251.
| Crossref | GoogleScholarGoogle Scholar |
[20]
J. J. Geng ,
X. J. Niu ,
X. C. Jin ,
X. R. Wang ,
X. H. Gu ,
E. Marc ,
D. Glindemann ,
Simultaneous monitoring of phosphine and of phosphorus fractionations in Taihu Lake sediments and phosphine emission from lake sediments.
Biogeochemistry 2005
, 76, 283.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[21]
Y. N. Hong ,
J. J. Geng ,
S. Qiao ,
L. L. Ding ,
X. Y. Gu ,
X. R. Wang ,
D. Glindemann ,
H. Q. Ren ,
Distribution of phosphine in the offshore south-west Yellow Sea, East Asia.
Mar. Chem. 2010
, 118, 67.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[22]
J. J. Geng ,
X. C. Jin ,
Q. Wang ,
X. J. Niu ,
X. R. Wang ,
M. Edwards ,
D. Glindemann ,
Matrix-bound phosphine formation and depletion in eutrophic lake sediment fermentation – simulation of different environmental factors.
Anaerobe 2005
, 11, 273.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[23]
J. F. Shimp ,
J. C. Tracy ,
L. C. Davis ,
E. Lee ,
W. Huang ,
L. E. Erickson ,
J. L. Schnoor ,
Beneficial effects of plants in the remediation of soil and groundwater contaminated with organic materials.
Environ. Sci. Technol. 1993
, 23, 41.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[24]
R. B. Zhu ,
D. M. Kong ,
L. A. Sun ,
J. J. Geng ,
X. R. Wang ,
The first determination of atmospheric phosphine in Antarctica.
Chin. Sci. Bull. 2007
, 52, 131.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[25]
R. B. Zhu ,
D. M. Kong ,
L. G. Sun ,
J. J. Geng ,
X. R. Wang ,
D. Glindemann ,
Tropospheric phosphine and its sources in coastal Antarctica.
Environ. Sci. Technol. 2006
, 40, 7656.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[26]
R. B. Zhu ,
Y. S. Liu ,
J. J. Sun ,
L. G. Sun ,
J. J. Geng ,
Stimulation of gaseous phosphine production from Antarctic seabird guanos and ornithogenic soils.
J. Environ. Sci. (China) 2009
, 21, 150.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[27]
L. H. Ziska ,
A. McClung ,
Differential response of cultivated and weedy (red) rice to recent and projected increases in atmospheric carbon dioxide.
Agron. J. 2008
, 100, 1259.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[28]
T. A. Anderson ,
E. L. Kruger ,
J. R. Coats ,
Enhanced degradation of a mixture of three herbicides in the rhizosphere of a herbicide-tolerant plant.
Chemosphere 1994
, 28, 1551.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[29]
L. Cheng ,
J. Zhu ,
G. Chen ,
X. Zheng ,
N.-H. Oh ,
T. W. Rufty ,
D. deB. Richter ,
S. Hu ,
Atmospheric CO2 enrichment facilitates cation release from soil.
Ecol. Lett. 2010
, 13, 284.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[30]
J. Roels ,
G. Huyghe ,
W. Verstraete ,
Microbially mediated phosphine emission.
Sci. Total Environ. 2005
, 338, 253.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[31]
H. F. Cao ,
J. A. Liu ,
Y. H. Zhuang ,
D. Glindemann ,
Emission sources of atmospheric phosphine and simulation of phosphine formation.
Sci. China Ser. B 2000
, 43, 162.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[32]
S. H. Han ,
Y. H. Zhuang ,
H. X. Zhang ,
Z. J. Wang ,
J. Z. Yang ,
Phosphine and methane generation by the addition of organic compounds containing carbon–phosphorus bonds into incubated soil.
Chemosphere 2002
, 49, 651.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[33]
Z. H. Feng ,
X. X. Song ,
Z. M. Yu ,
Distribution characteristics of matrix-bound phosphine along the coast of China and possible environmental controls.
Chemosphere 2008
, 73, 519.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[34]
R. B. Zhu ,
L. G. Sun ,
D. M. Kong ,
J. J. Geng ,
N. Wang ,
Q. Wang ,
X. R. Wang ,
Matrix-bound phosphine in Antarctic biosphere.
Chemosphere 2006
, 64, 1429.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |