Isoprene emission from phytoplankton monocultures: the relationship with chlorophyll-a, cell volume and carbon content
B. Bonsang A G , V. Gros A , I. Peeken B D E , N. Yassaa C F , K. Bluhm B , E. Zoellner B , R. Sarda-Esteve A and J. Williams CA Laboratoire des Sciences du Climat et de l’Environnement (LSCE), Institut Pierre Simon Laplace (IPSL), laboratoire CEA/CNRS/UVSQ, CE Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette, France.
B IFM-GEOMAR Leibniz Institut for Marine Sciences, Marine Biogeochemie, Dienstgebäude Westufer, Duesternbrooker Weg 20, D-24105 Kiel, Germany.
C Max Planck Institute for Chemistry, Atmospheric Chemistry Department, Johann Joachim Becher Weg 27, D-55128 Mainz, Germany.
D Center for Marine Environmental Sciences (MARUM), Leobener Strasse, D-28359 Bremen, Germany.
E Alfred Wegener Institute for Polar and Marine Research, Biological Oceanography, Am Handelshafen 12, D-27570 Bremerhaven, Germany.
F Laboratoire d’Analyse Organique Fonctionnelle, Faculty of Chemistry, University of Sciences and Technology Houari Boumediene (USTHB), BP 32 El-Alia Bab-Ezzouar,16111 Algiers, Algeria.
G Corresponding author. Email: bernard.bonsang@lsce.ipsl.fr
Environmental Chemistry 7(6) 554-563 https://doi.org/10.1071/EN09156
Submitted: 1 December 2009 Accepted: 19 October 2010 Published: 21 December 2010
Environmental context. Isoprene, a natural product of both terrestrial vegetation and marine organisms, is rapidly oxidised in the atmosphere, and thereby plays a key role in the regional budget of oxidants. Although isoprene production from terrestrial plants has been extensively investigated, production processes and emission rates from marine species are still poorly understood. We present results from laboratory experiments showing that isoprene is emitted from living phytoplankton cells at variable rates depending on the light intensity, cell volume, and carbon content of the plankton cells.
Abstract. We report here isoprene emission rates determined from various phytoplankton cultures incubated under PAR light which was varied so as to simulate a natural diel cycle. Phytoplankton species representative of different phytoplankton functional types (PFTs) namely: cyanobacteria, diatoms, coccolithophorides, and chlorophytes have been studied. Biomass normalised isoprene emission rates presented here relative to the chlorophyll-a (Chl-a) content of the cultures showed that the two cyanobacteria (Synechococcus and Trichodesmium) were the strongest emitters with emission rates in the range of 17 to 28 µg C5H8 g–1 Chl-a h–1. Diatoms produced isoprene in a significantly lower emission range: 3 to 7.5 µg C5H8 g–1 Chl-a h–1 and Dunaliella tertiolecta was by far the lowest emitter of our investigated plankton cultures. Despite the group specific differences observed, a high emission rate variance was observed to occur within one phytoplankton group. However, a combination of literature and our own data showed a clear relationship between the actual cell volume and the isoprene emission rates. This relationship could be a valuable tool for future modelling approaches of global isoprene emissions.
Additional keywords: ocean, sea–air exchanges.
References
[1] A. Guenther, C. N. Hewitt, D. Erickson, R. Fall, C. Geron, T. Graedel, P. Harley, L. Klinger, M. Lerdau, W. A. Mckay, T. Pierce, B. Scholes, R. Steinbrecher, R. Tallamraju, J. Taylor, P. Zimmerman, A global-model of natural volatile organic-compound emissions. J. Geophys. Res. 1995, 100, 8873.| A global-model of natural volatile organic-compound emissions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmvFKrsb0%3D&md5=2542e76caf5293bcff13aefdf5d2f147CAS |
[2] A. Guenther, T. Karl, P. Harley, C. Wiedinmyer, P. I. Palmer, C. Geron, Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 2006, 6, 3181.
| Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtV2hs7vF&md5=5a2d01edaad4c6720a0a5f11f0f5d3adCAS |
[3] N. Poisson, M. Kanakidou, P. Crutzen, Impact of non-methane hydrocarbons on tropospheric chemistry and the oxidizing power of the global troposphere: 3-dimensional modelling results. J. Atmos. Chem. 2000, 36, 157.
| Impact of non-methane hydrocarbons on tropospheric chemistry and the oxidizing power of the global troposphere: 3-dimensional modelling results.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjt1Grt7Y%3D&md5=8eecee896ac514c4111c4cc617979655CAS |
[4] J. Williams, J. M. Roberts, F. C. Fehsenfeld, S. B. Bertman, M. P. Buhr, P. D. Goldan, G. Hübler, W. C. Kuster, T. B. Ryerson, M. Trainer, V. Young, Regional ozone from biogenic hydrocarbons deduced from airborne measurements of PAN, PPN, and MPAN. Geophys. Res. Lett. 1997, 24, 1099.
| Regional ozone from biogenic hydrocarbons deduced from airborne measurements of PAN, PPN, and MPAN.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjsFSit7k%3D&md5=e900cf0a8a7e0ebb2e55d7f43083f113CAS |
[5] M. Claeys, W. Wang, A. C. Ion, I. Kourtchev, A. Gelencsér, W. Maenhaut, Formation of secondary organic aerosols from isoprene and its gas-phase oxidation products through reaction with hydrogen peroxide. Atmos. Environ. 2004, 38, 4093.
| Formation of secondary organic aerosols from isoprene and its gas-phase oxidation products through reaction with hydrogen peroxide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltlyhs78%3D&md5=b412acdf7e2df5b73f52c87b194d157fCAS |
[6] B. Bonsang, C. Polle, G. Lambert, Evidence for marine production of isoprene. Geophys. Res. Lett. 1992, 19, 1129.
| Evidence for marine production of isoprene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XmsFOgu7s%3D&md5=8526d81db034e5feefcdfc7fef71364fCAS |
[7] P. J. Milne, D. D. Riemer, R. G. Zika, L. E. Brand, Measurement of vertical distribution of isoprene in surface seawater, its chemical fate, and its emission from several phytoplankton monocultures. Mar. Chem. 1995, 48, 237.
| Measurement of vertical distribution of isoprene in surface seawater, its chemical fate, and its emission from several phytoplankton monocultures.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjs1Ggt70%3D&md5=e828c0d9864de7e31c15d4eb36a02b23CAS |
[8] P. I. Palmer, S. L. Shaw, Quantifying global marine isoprene fluxes using MODIS chlorophyll observations. Geophys. Res. Lett. 2005, 32, L09805.
| Quantifying global marine isoprene fluxes using MODIS chlorophyll observations.Crossref | GoogleScholarGoogle Scholar |
[9] N. Meskhidze, A. Nenes, Phytoplankton and cloudiness in the Southern Ocean. Science 2006, 314, 1419.
| Phytoplankton and cloudiness in the Southern Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1CntrnO&md5=d5da88385d96fc0e0a60883c84bc18ffCAS | 17082422PubMed |
[10] S. R. Arnold, D. V. Spracklen, J. Williams, N. Yassaa, J. Sciare, B. Bonsang, V. Gros, I. Peeken, A. C. Lewis, S. Alvain, C. Moulin, Evaluation of the global oceanic isoprene source and its impacts on marine organic carbon aerosol. Atmos. Chem. Phys. 2009, 8, 16 445..
[11] T. Anttila, B. Langmann, S. Varghese, C. D. O’Dowd, C. Scannell, On the contribution of isoprene oxidation to marine aerosol over the Northeast Atlantic, in Nucleation and Atmospheric Aerosols, 17th International Conference, Galway, Ireland (Eds C. D. O’Dowd, P. E. Wagner) 2007, part IX, pp. 1070–1074 (Springer: the Netherlands)
[12] B. Gantt, N. Meskhidze, D. Kamykowski, A new physically-based quantification of isoprene and primary organic aerosol emissions from the world’s ocean. Atmos. Chem. Phys. 2009, 9, 2933.
| A new physically-based quantification of isoprene and primary organic aerosol emissions from the world’s ocean.Crossref | GoogleScholarGoogle Scholar |
[13] W. A. McKay, M. F. Turner, B. M. R. Jones, C. M. Halliwell, Emissions of hydrocarbons from marine phytoplankton – some results from controlled laboratory experiments. Atmos. Environ. 1996, 30, 2583.
| Emissions of hydrocarbons from marine phytoplankton – some results from controlled laboratory experiments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xjt1Shsbc%3D&md5=a7d4948c42462fbe42c97d458e1cce14CAS |
[14] W. Broadgate, P. Liss, S. Penkett, Seasonal emissions of isoprene and other reactive hydrocarbon gases from the ocean. Geophys. Res. Lett. 1997, 24, 2675.
| Seasonal emissions of isoprene and other reactive hydrocarbon gases from the ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnsVyku7c%3D&md5=11e3e51506b2348b2a792ab834ac5461CAS |
[15] W. J. Broadgate, G. Malin, F. C. Kupper, A. Thompson, P. S. Liss, Isoprene and other non-methane hydrocarbons from seaweeds: a source of reactive hydrocarbons to the atmosphere. Mar. Chem. 2004, 88, 61.
| Isoprene and other non-methane hydrocarbons from seaweeds: a source of reactive hydrocarbons to the atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktFKrtb8%3D&md5=de185099bca78168b7291ee010d4b934CAS |
[16] S. L. Shaw, S. W. Chisholm, R. G. Prinn, Isoprene production by Prochlorococcus, a marine cyanobacterium, and other phytoplankton. Mar. Chem. 2003, 80, 227.
| Isoprene production by Prochlorococcus, a marine cyanobacterium, and other phytoplankton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtlKjs78%3D&md5=31a803e8657a18680ad8501231f060fdCAS |
[17] Y. Yokouchi, H.-J. Li, T. Machida, S. Aoki, H. Akimoto, Isoprene in the marine boundary layer (Southeast Asian Sea, eastern Indian Ocean, and Southern Ocean): comparison with dimethyl sulfide and bromoform. J. Geophys. Res. 1999, 104, 8067.
| Isoprene in the marine boundary layer (Southeast Asian Sea, eastern Indian Ocean, and Southern Ocean): comparison with dimethyl sulfide and bromoform.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtFyltL8%3D&md5=9862709bcfe92a1b6cacce23f4d86eabCAS |
[18] E. Liakakou, M. Vrekoussis, B. Bonsang, Ch. Donousis, M. Kanakidou, N. Mihalopoulos, Isoprene above the eastern Mediterranean: seasonal variation and contribution to the oxidation capacity of the atmosphere. Atmos. Environ. 2007, 41, 1002.
| Isoprene above the eastern Mediterranean: seasonal variation and contribution to the oxidation capacity of the atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlClsbnJ&md5=c45e55c0fdfe087f23ee14bde4f629d3CAS |
[19] V. Gros, I. Peeken, K. Bluhm, E. Zoellner, R. Sarda-Esteve, B. Bonsang, Carbon monoxide emissions by phytoplankton: evidence from laboratory experiments. Environ. Chem. 2009, 6, 369.
| Carbon monoxide emissions by phytoplankton: evidence from laboratory experiments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFSkurjF&md5=4b7fc80e70e1bb06c6af9fd8b8bf449eCAS |
[20] R. R. L. Guillard, Culture of phytoplankton for feeding marine invertebrates, in Culture of Marine Invertebrate Animals (Eds W. Leonard Smith, M. H. Chanley) 1975, pp. 26–60 (Plenum Press: New York).
[21] R. R. L. Guillard, J. H. Ryther, Studies of marine planktonic diatoms. I. Cyclotella nana (Hustedt) and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 1962, 8, 229.
| Studies of marine planktonic diatoms. I. Cyclotella nana (Hustedt) and Detonula confervacea (Cleve) Gran.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38XktlWqu70%3D&md5=41268076cc4790b123317f022ade7f62CAS | 13902807PubMed |
[22] R. Rippka, T. Coursin, W. Hess, C. Lichtlé, D. J. Scanlan, K. A. Palinska, I. Iteman, F. Partensky, J. Houmard, M. Herdman, Prochlorococcus marinus Chisholm et al. 1992 subsp. pastoris subsp. nov. strain PCC 9511, the first axenic chlorophyll a2/b2-containing cyanobacterium (Oxyphotobacteria). Int. J. Syst. Evol. Microbiol. 2000, 50, 1833..
| 11034495PubMed |
[23] M. Touaty, Développement instrumental de la mesure en continu des hydrocarbures légers par chromatographie en phase gazeuse. Ph.D. Thesis, Université de Paris VII. 1999.
[24] A. Gabard, Optimisation of the sampling trapping and injection system of the C2–C5 analyser. Final report ADEME contract N° 01 62 010 2001 (ADEME: Paris).
[25] B. Bonsang, M. Kanakidou, Non-methane hydrocarbon variability during the FIELDVOC’94 campaign in Portugal. Chemosphere, Glob. Chang. Sci. 2001, 3, 259.
| Non-methane hydrocarbon variability during the FIELDVOC’94 campaign in Portugal.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmsValsbo%3D&md5=80bfe9daa44b87121ab7dee7b234caffCAS |
[26] B. Bonsang, A. Al Aarbaoui, J. Sciare, Diurnal variation of non methane hydrocarbons in the sub Antarctic atmosphere. Environ. Chem. 2008, 5, 16.
| Diurnal variation of non methane hydrocarbons in the sub Antarctic atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitlagsLo%3D&md5=39ca695949c6f715abf1313fe577c7c4CAS |
[27] H. Boudriès, Mesure et comportement des hydrocarbures non méthaniques en atmosphère naturelle. Ph.D. Thesis, Université de Paris VII. 1994.
[28] N. Yassaa, I. Peeken, E. Zollner, K. Bluhm, S. Arnold, D. Spracklen, J. Williams, Evidence for marine production of monoterpenes. Environ. Chem. 2008, 5, 391.
| Evidence for marine production of monoterpenes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFWgu7bF&md5=622c685bc2b365bf1cf69174a41f8865CAS |
[29] N. A. Welschmeyer, Fluorometric analysis of chlorophyll-a in the presence of chlorophyll-b and pheopigments. Limnol. Oceanogr. 1994, 39, 1985.
| Fluorometric analysis of chlorophyll-a in the presence of chlorophyll-b and pheopigments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXks1Sru70%3D&md5=71e0a0b261f98d6d025591f6c78c1177CAS |
[30] H. Utermoehl, Zur Vervollkommnung der quantitativen Phytoplankton Methodik (Ed. E. Schweizerbartsche) 1958 (Science Publishers: Stuttgart).
[31] D. Marie, F. Partensky, S. Jacquet, D. Vaulot, Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I. Appl. Environ. Microbiol. 1997, 63, 186..
| 16535483PubMed |
[32] H. Hillebrand, C.-D. Dürselen, D. Kirschtel, U. Pollingher, T. Zohary, Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 1999, 35, 403.
| Biovolume calculation for pelagic and benthic microalgae.Crossref | GoogleScholarGoogle Scholar |
[33] S. Menden-Deuer, E. J. Lessard, Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol. Oceanogr. 2000, 45, 569.
| Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsV2ltLk%3D&md5=4e629d31784032bddcd3d33b5c6455a0CAS |
[34] J. M. Gasol, P. A. Del Giorgio, Using flow cytometry for counting natural planktonic bacteria and understanding the structure of planktonic bacterial communities. Sci. Mar. 2000, 64, 197..
[35] S. Lee, J. A. Fuhrman, Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl. Environ. Microbiol. 1987, 53, 1298..
| 16347362PubMed |
[36] T. Platt, C. L. Gallegos, W. G. Harrison, Photoinhibition of phytosynthesis in natural assemblages of marine phytoplankton. J. Mar. Res. 1980, 38, 687..
[37] M. Ratte, O. Bujok, A. Spitzy, J. Rudolph, Photochemical alkene formation in seawater from dissolved organic carbon: results from laboratory experiments. J. Geophys. Res. 1998, 103, 5707.
| Photochemical alkene formation in seawater from dissolved organic carbon: results from laboratory experiments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXit1Smtb8%3D&md5=0baea2943e2e164d640627084f1470fbCAS |
[38] D. D. Riemer, P. J. Milne, R. G. Zika, W. H. Pos, Photoproduction of nonmethane hydrocarbons (NMHCs) in seawater. Mar. Chem. 2000, 71, 177.
| Photoproduction of nonmethane hydrocarbons (NMHCs) in seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXls1Crurc%3D&md5=df96869e3d91ad5cba40d1d46239b021CAS |
[39] M. M. Mullin, P. R. Sloan, R. W. Eppley, Relationship between carbon content, cell volume and area in phytoplankton. Limnol. Oceanogr. 1966, 11, 307.
| Relationship between carbon content, cell volume and area in phytoplankton.Crossref | GoogleScholarGoogle Scholar |
[40] R. R. Strathmann, Estimating the organic carbon content of phytoplankton from cell volume or plama volume. Limnol. Oceanogr. 1967, 12, 411.
| Estimating the organic carbon content of phytoplankton from cell volume or plama volume.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXhvF2nsw%3D%3D&md5=cc6c3f1ea0cc747adfec10d03fea986aCAS |
[41] T. L. Sivy, M. C. Shirk, R Fall, Isoprene synthase activity parallels fluctuations of isoprene release during growth of Bacillus subtilis. Biochem. Bioph. Res. Co. 2002, 294, 71.
| Isoprene synthase activity parallels fluctuations of isoprene release during growth of Bacillus subtilis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvVahtLY%3D&md5=667ed4df49d609aa6e8004aa90ca9bc2CAS |
[42] M. Harvaux, Carotenoids as membrane stabilizers in chloroplasts trends in plants. Science 1996, 3, 147..
[43] T. D. Sharkey, E. L. Singsaas, Why plants emit isoprene. Nature 1995, 374, 769.
| Why plants emit isoprene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlt1Oku7w%3D&md5=ab751ac349d14bff85de30584420a13aCAS |
[44] S. Demers, S. Roy, R. Gagnon, C. Vignault, Rapid light-induced changes in cell fluorescence and in xanthophyll-cycle pigments of Alexandrium excavatum (Dinophyceae) and Thalassiosira pseudonana (Bacillariophyceae): a photo-protection mechanism. Mar. Ecol. Prog. Ser. 1991, 76, 185.
| Rapid light-induced changes in cell fluorescence and in xanthophyll-cycle pigments of Alexandrium excavatum (Dinophyceae) and Thalassiosira pseudonana (Bacillariophyceae): a photo-protection mechanism.Crossref | GoogleScholarGoogle Scholar |
[45] J. F. Rontani, P. Cuny, V. Grossi, Photodegradation of chlorophyll phytyl chain in senescen leaves of higher plants. Phytochemistry 1996, 42, 347.
| Photodegradation of chlorophyll phytyl chain in senescen leaves of higher plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjtlWrtLk%3D&md5=4c54b9d572501cf90af5c4eee0e60962CAS |
[46] J. F. Rontani, A. Rabourdin, D. Marchand, C. Aubert, Photochemical oxidation and autoxidation of chlorophyll phytyl side chain in senescent phytoplanktonic cells: potential sources of several acyclic isoprenoid compounds in the marine environment. Lipids 2003, 38, 241.
| Photochemical oxidation and autoxidation of chlorophyll phytyl side chain in senescent phytoplanktonic cells: potential sources of several acyclic isoprenoid compounds in the marine environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjvFOrtb0%3D&md5=fbc6c309868f326aa91e04b94da2a886CAS | 12784864PubMed |
[47] J. F. Rontani, I. Jameson, S. Christodoulou, J. K. Volkman, Free radical oxidation (autooxidation) of alkenones and other lipids in cells of Emiliania huxleyi. Phytochemistry 2007, 68, 913.
| Free radical oxidation (autooxidation) of alkenones and other lipids in cells of Emiliania huxleyi.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisVWhtLY%3D&md5=e94f74008e1e8c9b1fb89e75424fa2daCAS | 17258251PubMed |
[48] P. Cuny, J. F. Rontani, On the widespread occurrence of 3-methylidene-7,11,15-trimethylhexadecan-1,2-diol in the marine environment: a specific isoprenoid marker of chlorophyll photodegradation. Mar. Chem. 1999, 65, 155.
| On the widespread occurrence of 3-methylidene-7,11,15-trimethylhexadecan-1,2-diol in the marine environment: a specific isoprenoid marker of chlorophyll photodegradation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXivFemsLs%3D&md5=7ad3dbe2c29beb8aa1c6b74a5d50a89eCAS |
[49] S. Alvain, C. Moulin, Y. Dandonneau, F. M. Breon, Remote sensing of phytoplankton groups in case 1 waters from global SeaWiFS imagery. Deep-Sea Res. 2005, 52, 1989.
| Remote sensing of phytoplankton groups in case 1 waters from global SeaWiFS imagery.Crossref | GoogleScholarGoogle Scholar |
[50] J. Uitz, H. Claustre, A. Morel, S. B. Hooker, Vertical distribution of phytoplankton communities in open ocean: an assessment based on surface chlorophyll. J. Geophys. Res. 2006, 111,
| Vertical distribution of phytoplankton communities in open ocean: an assessment based on surface chlorophyll.Crossref | GoogleScholarGoogle Scholar | 20411040PubMed |
[51] J. H. Kroll, N. L. Ng, S. M. Murphy, R. C. Flagan, J. H. Seinfeld, Secondary organic aerosol formation from isoprene photooxidation. Environ. Sci. Technol. 2006, 40, 1869.
| Secondary organic aerosol formation from isoprene photooxidation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhtl2ju7o%3D&md5=eeaa0150461561df6b07d553b9b0fa2aCAS | 16570610PubMed |
[52] B. Ervens, A. G. Carlton, B. J. Turpin, K. E. Altieri, S. M. Kreidenweis, G. Feingold, Secondary organic aerosol yields from cloud-processing of isoprene oxidation products. Geophys. Res. Lett. 2008, 35, L02816.
| Secondary organic aerosol yields from cloud-processing of isoprene oxidation products.Crossref | GoogleScholarGoogle Scholar |
[53] D. V. Spracklen, S. R. Arnold, J. Sciare, K. S. Carslaw, C. Pio, Globally significant oceanic source of organic carbon aerosol. Geophys. Res. Lett. 2008, 35, L12811.
| Globally significant oceanic source of organic carbon aerosol.Crossref | GoogleScholarGoogle Scholar |