Arsenic speciation in marine organisms from Antarctic coastal environments
Marco Grotti A , Cristina Lagomarsino A , Walter Goessler B and Kevin A. Francesconi BA Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, I-16146 Genova, Italy.
B Karl-Franzens-University Graz, Institute of Chemistry-Analytical Chemistry, Universitaetsplatz 1, A-8010 Graz, Austria.
C Corresponding author. Email: grotti@chimica.unige.it
Environmental Chemistry 7(2) 207-214 https://doi.org/10.1071/EN09131
Submitted: 16 October 2009 Accepted: 19 January 2010 Published: 22 April 2010
Environmental context. In studies on trace element accumulation and transformation, it is difficult to distinguish the relative contribution of natural and anthropogenic sources. Antarctic ecosystems provide the opportunity to investigate the natural cycles of the elements, because the food webs are relatively simple and trace element contamination from anthropogenic sources is negligible. We report the arsenic species in various tissues from a range of Antarctic organisms, and compare the patterns of arsenicals with those from similar studies in temperate and tropical waters.
Abstract. Antarctic coastal environments offer the unique opportunity to study elemental cycling under pristine conditions. We report arsenic species in various tissues from a range of Antarctic organisms collected from coastal environments, and compare our results with those from similar studies in temperate and tropical waters. The arsenic species were determined in aqueous methanol extracts of tissues (including muscle, liver, gonads and spleen) by HPLC/ICPMS. The major compounds were arsenobetaine and oxo-arsenosugars, with their relative proportions depending on the position of the organism in the food chain and, for some species, on the type of tissue analysed. Several minor compounds, such as dimethylarsinate, trimethylarsine oxide, trimethylarsoniopropionate and arsenocholine were also found; the concentrations of these arsenic species were significantly lower in muscle compared with the other tissues. The transfer of the arsenic through the Antarctic marine food web and the speciation patterns found in the organisms were similar to those reported for comparable organisms from other marine ecosystems. Our study supports the view that the high levels of arsenic occurring in various forms in marine samples is a natural phenomenon, and is little influenced by anthropogenic activities.
[1]
[2]
J. C. Sanchez-Hernandez ,
Trace element contamination in Antarctic ecosystems.
Rev. Environ. Contam. Toxicol. 2000
, 166, 83.
|
CAS |
PubMed |
[3]
A. J. Busalacchi ,
The role of the Southern Ocean in global processes: an earth system science approach.
Antarct. Sci. 2004
, 16, 363.
| Crossref | GoogleScholarGoogle Scholar |
[4]
R. Bargagli ,
F. Monaci ,
J. C. Sanchez-Hernandez ,
D. Cateni ,
Biomagnification of mercury in an Antarctic marine coastal food web.
Mar. Ecol. Prog. Ser. 1998
, 169, 65.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[5]
P. W. Boyd ,
A. J. Watson ,
C. S. Law ,
E. R. Abraham ,
T. Trull ,
R. Murdoch ,
D. C. E. Bakker ,
A. R. Bowie ,
et al. A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization.
Nature 2000
, 407, 695.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[6]
W. R. Cullen ,
K. J. Reimer ,
Arsenic speciation in the environment.
Chem. Rev. 1989
, 89, 713.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[7]
K. A. Francesconi ,
J. S. Edmonds ,
Arsenic and marine organisms.
Adv. Inorg. Chem. 1996
, 44, 147.
| Crossref | GoogleScholarGoogle Scholar |
[8]
K. A. Francesconi ,
Current perspectives in arsenic environmental and biological research.
Environ. Chem. 2005
, 2, 141.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[9]
M. Grotti ,
F. Soggia ,
C. Lagomarsino ,
S. Dalla Riva ,
W. Goessler ,
K. A. Francesconi ,
Natural variability and distribution of trace elements in marine organisms from Antarctic coastal environments.
Antarct. Sci. 2008
, 20, 39.
| Crossref | GoogleScholarGoogle Scholar |
[10]
W. Goessler ,
M. Pavkov ,
Accurate quantification and transformation of arsenic compounds during wet ashing with nitric acid and microwave assisted heating.
Analyst 2003
, 128, 796.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[11]
K. A. Francesconi ,
J. S. Edmonds ,
R. V. Stick ,
B. W. Skelton ,
A. H. White ,
Arsenic-containing ribosides from the brown alga Sargassum lacerifolium: X-ray molecular structure of 2-amino-3-[5′-deoxy-5′-(dimethylarsinoyl)ribosyloxy]-propane-1-sulphonic acid.
J. Chem. Soc., Perkin Trans. 1 1991
, I, 2707.
| Crossref | GoogleScholarGoogle Scholar |
[12]
[13]
M. Kovačevič ,
W. Goessler ,
Direct introduction of volatile carbon compounds into the spray chamber of an inductively coupled plasma mass spectrometer: sensitivity enhancement for selenium.
Spectrochim. Acta, B At. Spectrosc. 2005
, 60, 1357.
| Crossref | GoogleScholarGoogle Scholar |
[14]
A. Negri ,
K. Burns ,
S. Boyle ,
D. Brinkman ,
N. Webster ,
Contamination in sediments, bivalves and sponges of McMurdo Sound, Antarctica.
Environ. Pollut. 2006
, 143, 456.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[15]
V. Nischwitz ,
S. A. Pergantis ,
First report on the detection and quantification of arsenobetaine in extracts of marine algae using HPLC-ES-MS/MS.
Analyst 2005
, 130, 1348.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[16]
M. Grotti ,
F. Soggia ,
C. Lagomarsino ,
W. Goessler ,
K. A. Francesconi ,
Arsenobetaine is a significant arsenical constituent of the red Antarctic alga Phyllophora Antarctica.
Environ. Chem. 2008
, 5, 171.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[17]
M. Chiantore ,
R. Cattaneo-Vietti ,
P. A. Berkman ,
M. Nigro ,
M. Vacchi ,
S. Schiaparelli ,
G. Albertelli ,
Antarctic scallop (Adamussium colbecki) spatial population variability along the Victoria Land Coast, Antarctica.
Polar Biol. 2001
, 24, 139.
| Crossref | GoogleScholarGoogle Scholar |
[18]
M. Vacchi ,
R. Cattaneo-Vietti ,
M. Chiantore ,
M. Dalù ,
Predator–prey relationship between the nototheniid fish Trematomus bernacchii and the Antarctic scallop Adamussium colbecki at Terra Nova Bay (Ross Sea).
Antarct. Sci. 2000
, 12, 64.
| Crossref | GoogleScholarGoogle Scholar |
[19]
I.-Y. Ahn ,
Ecology of the Antarctic bivalve Laternula elliptica (King and Broderip) in Collins Harbor, King George Island: benthic environment and an adaptive strategy.
Mem. Nat. Inst. Polar Res. 1994
, 50, 1.
[20]
M. C. Lohan ,
P. J. Statham ,
L. Peck ,
Trace metals in the Antarctic soft-shelled clam Laternula elliptica: implications for metal pollution from Antarctic research stations.
Polar Biol. 2001
, 24, 808.
| Crossref | GoogleScholarGoogle Scholar |
[21]
Y. Shibata ,
M. Morita ,
Characterization of organic arsenic compounds in bivalves.
Appl. Organomet. Chem. 1992
, 6, 343.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[22]
S. X. C. Le ,
W. R. Cullen ,
K. J. Reimer ,
Speciation of arsenic compounds in some marine organisms.
Environ. Sci. Technol. 1994
, 28, 1598.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[23]
S. McSheehy ,
P. Pohl ,
R. Lobinski ,
J. Szpunar ,
Investigation of arsenic speciation in oyster test reference material by multidimensional HPLC-ICP-MS and electrospray tandem mass spectrometry (ES-MS-MS).
Analyst 2001
, 126, 1055.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[24]
J. J. Corr ,
E. H. Larsen ,
Arsenic speciation by liquid chromatography coupled with ionspray tandem mass spectrometry.
J. Anal. At. Spectrom. 1996
, 11, 1215.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[25]
[26]
M. Vacchi ,
M. La Mesa ,
A. Castelli ,
Diet of two coastal nototheniid fish from Terra Nova Bay Ross Sea.
Antarct. Sci. 1994
, 6, 61.
| Crossref | GoogleScholarGoogle Scholar |
[27]
M. La Mesa ,
M. Dalù ,
M. Vacchi ,
Trophic ecology of the emerald notothen Trematomus bernacchii (Pisces, Nototheniidae) from Terra Nova Bay, Ross Sea, Antarctica.
Polar Biol. 2004
, 27, 721.
| Crossref | GoogleScholarGoogle Scholar |
[28]
[29]
K. Hanaoka ,
H. Koga ,
S. Tagawa ,
The degradation of arsenobetaine to inorganic arsenic by the microorganisms occurring in the suspended substances.
Comp. Biochem. Physiol. 1992
, 101B, 595.
|
CAS |
[30]
[31]
J. S. Edmonds ,
K. A. Francesconi ,
Trimethylarsine oxide in estuary catfish (Cnidoglanis macrocephalus) and school whiting (Sillago bassensis) after oral administration of sodium arsenate; and as a natural component of estuary catfish.
Sci. Total Environ. 1987
, 64, 317.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[32]
K. Hanaoka ,
T. Motoya ,
S. Tagawa ,
T. Kaise ,
Conversion of arsenobetaine by intestinal bacteria of a mollusc Liolophura japonica chitons.
Appl. Organomet. Chem. 1991
, 5, 427.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[33]
[34]
W. R. Cullen ,
H. Li ,
G. Hewitt ,
K. J. Reimer ,
N. Zalunardo ,
Identification of extracellular arsenical metabolites in the growth medium of the microorganisms Apiotrichum humicola and Scopulariopsis brevicaulis.
Appl. Organomet. Chem. 1994
, 8, 303.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[35]
W. Goessler ,
W. Maher ,
K. J. Irgolic ,
D. Kuehnelt ,
C. Schlagenhaufen ,
T. Kaise ,
Conversion of arsenic compounds in a marine food chain.
Fresenius J. Anal. Chem. 1997
, 359, 434.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[36]
S. Foster ,
W. Maher ,
E. Schmeisser ,
A. Taylor ,
F. Krikowa ,
S. Apte ,
Arsenic Species in a Rocky Intertidal Marine Food Chain in NSW, Australia, revisited.
Environ. Chem. 2006
, 3, 304.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[37]
S. Khokiattiwong ,
N. Kornkanitnan ,
W. Goessler ,
S. Kokarnig ,
K. A. Francesconi ,
Arsenic compounds in tropical marine ecosystems: similarities between mangrove forest and coral reef.
Environ. Chem. 2009
, 6, 226.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[38]
J. Kirby ,
W. Maher ,
A. Chariton ,
F. Krikowa ,
Arsenic concentrations and speciation in a temperate mangrove ecosystem, NSW, Australia.
Appl. Organomet. Chem. 2002
, 16, 192.
| Crossref | GoogleScholarGoogle Scholar |
CAS |