A comparative evaluation of water uptake on several mineral dust sources
Juan G. Navea A C , Haihan Chen B , Min Huang B , Gregory R. Carmichel B and Vicki H. Grassian A B DA Department of Chemistry, The University of Iowa, Iowa City, IA 52242, USA.
B Department of Chemical and Biochemical Engineering, The University of Iowa, Iowa City, IA 52242, USA.
C Present address: Chemistry Department, Lawrence University, Appleton, WI 54911, USA.
D Corresponding author. Email: vicki-grassian@uiowa.edu
Environmental Chemistry 7(2) 162-170 https://doi.org/10.1071/EN09122
Submitted: 1 October 2009 Accepted: 16 January 2010 Published: 22 April 2010
Environmental context. Dust particles produced from wind blown soils are of global significance as these dust particles not only impact visibility, as evident in the recent 2009 Australian dust storm, but also atmospheric chemistry, climate and biogeochemical cycles. The amount of water vapour in the atmosphere (relative humidity) can play a role in these global processes yet there are few studies and little quantitative data on water-dust particle interactions. The focus of this research is on quantifying water-dust particle interactions for several dust sources including Asia and Africa where dust storms are most prevalent.
Abstract. Mineral dust aerosol provides a reactive surface in the troposphere. The reactivity of mineral dust depends on the source region as chemical composition and mineralogy of the aerosol affects its interaction with atmospheric gases. Furthermore, the impact of mineral dust aerosol in atmospheric processes and climate is a function of relative humidity. In this study, we have investigated water uptake of complex dust samples. In particular, water uptake as a function of relative humidity has been measured on three different dust sources that have been characterised using a variety of bulk and surface techniques. For these well-characterised dust samples, it is shown that although there are variations in chemical composition and mineralogy, on a per mass basis, water uptake capacities for the three dusts are very similar and are comparable to single component clay samples. These results suggest that the measured uptake of water of these bulk samples is dominated by the clay component.
Additional keyword: heterogeneous atmospheric chemistry, tropospheric particles.
Acknowledgements
This work was supported by the National Science Foundation under grant ATM0613124. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not reflect the views of the National Science Foundation.
[1]
I. Tegen ,
S. P. Harrison ,
K. Kohfeld ,
I. C. Prentice ,
M. Coe ,
M. Heimann ,
Impact of vegetation and preferential source areas on global dust aerosol: results from a model study.
J. Geophys. Res. – Atmos. 2002
, 107, 4756.
| Crossref | GoogleScholarGoogle Scholar |
[2]
C. R. Usher ,
A. E. Michel ,
V. H. Grassian ,
Reactions on mineral dust.
Chem. Rev. 2003
, 103, 4883.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[3]
C. S. Zender ,
H. S. Bian ,
D. Newman ,
Mineral Dust Entrainment and Deposition (DEAD) model: description and 1990s dust climatology.
J. Geophys. Res. – Atmos. 2003
, 108, 4416.
| Crossref | GoogleScholarGoogle Scholar |
[4]
S. E. Bauer ,
Y. Balkanski ,
M. Schulz ,
D. A. Hauglustaine ,
F. Dentener ,
Global modeling of heterogeneous chemistry on mineral aerosol surfaces: influence on tropospheric ozone chemistry and comparison to observations.
J. Geophys. Res. – Atmos. 2004
, 109, D02304.
| Crossref | GoogleScholarGoogle Scholar |
[5]
C. Moulin ,
C. E. Lambert ,
F. Dulac ,
U. Dayan ,
Control of atmospheric export of dust from North Africa by the North Atlantic oscillation.
Nature 1997
, 387, 691.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[6]
R. B. Husar ,
D. M. Tratt ,
B. A. Schichtel ,
S. R. Falke ,
F. Li ,
D. Jaffe ,
S. Gasso ,
T. Gill ,
et al. Asian dust events of April 1998.
J. Geophys. Res. – Atmos. 2001
, 106, 18317.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[7]
X. Li ,
H. Maring ,
D. Savoie ,
K. Voss ,
J. M. Prospero ,
Dominance of mineral dust in aerosol light-scattering in the North Atlantic trade winds.
Nature 1996
, 380, 416.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[8]
I. N. Sokolik ,
O. B. Toon ,
Direct radiative forcing by anthropogenic airborne mineral aerosols.
Nature 1996
, 381, 681.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[9]
I. Tegen ,
A. A. Lacis ,
I. Fung ,
The influence on climate forcing of mineral aerosols from disturbed soils.
Nature 1996
, 380, 419.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[10]
P. Alpert ,
Y. J. Kaufman ,
Y. Shay-El ,
D. Tanre ,
A. da Silva ,
S. Schubert ,
J. H. Joseph ,
et al. Quantification of dust-forced heating of the lower troposphere.
Nature 1998
, 395, 367.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[11]
I. N. Sokolik ,
D. M. Winker ,
G. Bergametti ,
D. A. Gillette ,
G. Carmichael ,
Y. J. Kaufman ,
L. Gomes ,
L. Schuetz ,
J. E. Penner ,
Introduction to special section: Outstanding problems in quantifying the radiative impacts of mineral dust.
J. Geophys. Res. – Atmos. 2001
, 106, 18015.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[12]
D. O. Topping ,
G. B. McFiggans ,
H. Coe ,
A curved multi-component aerosol hygroscopicity model framework. Part 1 – Inorganic compounds.
Atmos. Chem. Phys. 2005
, 5, 1205.
|
CAS |
[13]
D. O. Topping ,
G. B. McFiggans ,
H. Coe ,
A curved multi-component aerosol hygroscopicity model framework. Part 2 – Including organic compounds.
Atmos. Chem. Phys. 2005
, 5, 1223.
|
CAS |
[14]
E. R. Gibson ,
K. M. Gierlus ,
P. K. Hudson ,
V. H. Grassian ,
Generation of internally mixed insoluble and soluble aerosol particles to investigate the impact of atmospheric aging and heterogeneous processing on the CCN activity of mineral dust aerosol.
Aerosol Sci. Technol. 2007
, 41, 914.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[15]
T. D. Jickells ,
Z. S. An ,
K. K. Andersen ,
A. R. Baker ,
G. Bergametti ,
N. Brooks ,
J. J. Cao ,
P. W. Boyd ,
et al. Global iron connections between desert dust, ocean biogeochemistry, and climate.
Science 2005
, 308, 67.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[16]
D. M. Cwiertny ,
J. Baltrusaitis ,
G. J. Hunter ,
A. Laskin ,
M. M. Scherer ,
V. H. Grassian ,
Characterization and acid-mobilization study of iron-containing mineral dust source materials.
J. Geophys. Res. – Atmos. 2008
, 113, D05202.
| Crossref | GoogleScholarGoogle Scholar |
[17]
F. J. Dentener ,
G. R. Carmichael ,
Y. Zhang ,
J. Lelieveld ,
P. J. Crutzen ,
Role of mineral aerosol as a reactive surface in the global troposphere.
J. Geophys. Res. – Atmos. 1996
, 101, 22869.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[18]
B. J. Krueger ,
V. H. Grassian ,
J. P. Cowin ,
A. Laskin ,
Heterogeneous chemistry of individual mineral dust particles from different dust source regions: the importance of particle mineralogy.
Atmos. Environ. 2004
, 38, 6253.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[19]
R. C. Sullivan ,
K. A. Prather ,
Recent advances in our understanding of atmospheric chemistry and climate made possible by on-line aerosol analysis instrumentation.
Anal. Chem. 2005
, 77, 3861.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[20]
P. K. Mogili ,
P. D. Kleiber ,
M. A. Young ,
V. H. Grassian ,
N2O5 hydrolysis on the components of mineral dust and sea salt aerosol: comparison study in an environmental aerosol reaction chamber.
Atmos. Environ. 2006
, 40, 7401.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[21]
A. L. Goodman ,
G. M. Underwood ,
V. H. Grassian ,
A laboratory study of the heterogeneous reaction of nitric acid on calcium carbonate particles.
J. Geophys. Res. – Atmos. 2000
, 105, 29053.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[22]
A. L. Goodman ,
E. T. Bernard ,
V. H. Grassian ,
Spectroscopic study of nitric acid and water adsorption on oxide particles: enhanced nitric acid uptake kinetics in the presence of adsorbed water.
J. Phys. Chem. A 2001
, 105, 6443.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[23]
H. A. Al-Abadleh ,
H. A. Al-Hosney ,
V. H. Grassian ,
Oxide and carbonate surfaces as environmental interfaces: the importance of water in surface composition and surface reactivity.
J. Mol. Catal. Chem. 2005
, 228, 47.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[24]
A. Sorimachi ,
K. Sakamoto ,
M. Sakai ,
H. Ishihara ,
T. Fukuyama ,
M. Utiyama ,
H. J. Liu ,
W. Wang ,
et al. Laboratory and field measurements of dry deposition of sulfur dioxide onto Chinese loess surfaces.
Environ. Sci. Technol. 2004
, 38, 3396.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[25]
A. Sorimachi ,
K. Sakamoto ,
Laboratory measurement of the dry deposition of sulfur dioxide onto northern Chinese soil samples.
Atmos. Environ. 2007
, 41, 2862.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[26]
A. P. Prince ,
P. Kleiber ,
V. H. Grassian ,
M. A. Young ,
Heterogeneous interactions of calcite aerosol with sulfur dioxide and sulfur dioxide-nitric acid mixtures.
Phys. Chem. Chem. Phys. 2007
, 9, 3432.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[27]
[28]
J. D. Schuttlefield ,
H. Al-Hosney ,
A. Zachariah ,
V. H. Grassian ,
Attenuated total reflection Fourier transform infrared spectroscopy to investigate water uptake and phase transitions in atmospherically relevant particles.
Appl. Spectrosc. 2007
, 61, 283.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[29]
J. D. Schuttlefield ,
D. Cox ,
V. H. Grassian ,
An investigation of water uptake on clays minerals using ATR-FTIR spectroscopy coupled with quartz crystal microbalance measurements.
J. Geophys. Res. – Atmos. 2007
, 112, D21303.
| Crossref | GoogleScholarGoogle Scholar |
[30]
H. A. Al-Abadleh ,
V. H. Grassian ,
Phase transitions in magnesium nitrate thin films: a transmission FT-IR study of the deliquescence and efflorescence of nitric acid reacted magnesium oxide interfaces.
J. Phys. Chem. B 2003
, 107, 10829.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[31]
H. A. Al-Hosney ,
V. H. Grassian ,
Water, sulfur dioxide and nitric acid adsorption on calcium carbonate: a transmission and ATR-FTIR study.
Phys. Chem. Chem. Phys. 2005
, 7, 1266.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[32]
[33]
J. L. Bishop ,
C. M. Pieters ,
J. O. Edwards ,
Infrared spectroscopic analysis on the nature of water in montmorillonite.
Clays Clay Miner. 1994
, 42, 702.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[34]
J. Madejová ,
P. Komadel ,
Baseline studies of the clay minerals society source clays: infrared methods.
Clays Clay Miner. 2001
, 49, 410.
| Crossref | GoogleScholarGoogle Scholar |
[35]
[36]
R. Hanna ,
Infrared absorption spectrum of silicon dioxide.
J. Am. Chem. Soc. 1965
, 48, 595.
|
CAS |
[37]
P. K. Hudson ,
M. A. Young ,
P. D. Kleiber ,
V. H. Grassian ,
Coupled infrared extinction spectra and size distribution measurements for several non-clay components of mineral dust aerosol (quartz, calcite, and dolomite).
Atmos. Environ. 2008
, 42, 5991.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[38]
[39]
G. Ketteler ,
S. Yamamoto ,
H. Bluhm ,
K. Andersson ,
D. E. Starr ,
D. F. Ogletree ,
H. Ogasawara ,
A. Nilsson ,
M. Salmeron ,
et al. The nature of water nucleation sites on TiO2(110) surfaces revealed by ambient pressure X-ray photoelectron spectroscopy.
J. Phys. Chem. C 2007
, 111, 8278.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[40]
C. D. Mashburn ,
E. K. Frinak ,
M. A. Tolbert ,
Heterogeneous uptake of nitric acid on Na-montmorillonite clay as a function of relative humidity.
J. Geophys. Res. – Atmos. 2006
, 111, D15213.
| Crossref | GoogleScholarGoogle Scholar |
[41]
J.-M. Cases ,
I. Bérend ,
G. Besson ,
M. Francois ,
J.-P. Uriot ,
F. Thomas ,
J. E. Poirier ,
Mechanism of adsorption and desortion of water-vapor by homoionic montmorillonite. 1. The sodium-exchanged form.
Langmuir 1992
, 8, 2730.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[42]
R. W. Mooney ,
A. G. Keenan ,
L. A. Wood ,
Adsorption of water vapor by montmorillonite. 1. Heat of desoption and application of bet theory.
J. Am. Chem. Soc. 1952
, 74, 1367.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[43]
R. W. Mooney ,
A. G. Keenan ,
L. A. Wood ,
Adsorption of water vapor by montmorillonite. 2. Effect of exchangeable ions and lattice swelling as measured by X-ray diffraction.
J. Am. Chem. Soc. 1952
, 74, 1371.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[44]
I. Bérend ,
J.-M. Cases ,
M. François ,
J.-P. Uriot ,
L. Michot ,
A. Masion ,
F. Thomas ,
Mechanism of adsorption and desorption of water-vapor by homoionic montmorillonites. 2. The Li+, Na+, K+, Rb+ and Cs+ exchanged forms.
Clays Clay Miner. 1995
, 43, 324.
| Crossref | GoogleScholarGoogle Scholar |
[45]
P. B. Miranda ,
L. Xu ,
Y. R. Shen ,
M. Salmeron ,
Icelike water monolayer adsorbed on mica at room temperature.
Phys. Rev. Lett. 1998
, 81, 5876.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[46]
H. Herich ,
T. Tritcher ,
A. Wiacek ,
M. Gysel ,
E. Weingartner ,
U. Lohmann ,
U. Baltensperger ,
D. J. Cziczo ,
Water uptake of clay and desert dust aerosol particles at sub- and supersaturated water vapor conditions.
Phys. Chem. Chem. Phys. 2009
, 11, 7804.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[47]
Z. B. Shi ,
M. D. Krom ,
S. Bonneville ,
A. R. Baker ,
T. D. Jickells ,
L. G. Benning ,
Formation of iron nanoparticles and increase in iron reactivity in mineral dust during simulated cloud processing.
Environ. Sci. Technol. 2009
, 43, 6592.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[48]
W. Z. Xu ,
C. T. Johnston ,
P. Parker ,
S. F. Agnew ,
Infrared study of water sorption on Na-, Li-, Ca- and Mg-exchanged (SWy-1 and SAz-1) montmorillonite.
Clays Clay Miner. 2000
, 48, 120.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[49]
E. J. M. Hensen ,
T. J. Tambach ,
A. Bliek ,
B. Smit ,
Adsorption isotherms of water in Li-, Na- and K-montmorillonite by molecular simulation.
J. Chem. Phys. 2001
, 115, 3322.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[50]
[51]
S. E. Bauer ,
M. I. Mishchenko ,
A. A. Lacis ,
S. Zhang ,
J. Perlwitz ,
S. M. Metzger ,
Do sulfate and nitrate coatings of mineral dust have important effects on radiative properties and climate modeling?
J. Geophys. Res. 2007
, 112, D06307.
| Crossref | GoogleScholarGoogle Scholar |
[52]
G. M. Underwood ,
C. H. Song ,
M. Phadnis ,
G. R. Carmichael ,
V. H. Grassian ,
Heterogeneous reactions of NO2 and HNO3 on oxides and mineral dust: a combined laboratory and modeling study.
J. Geophys. Res. – Atmos. 2001
, 106, 18055.
| Crossref | GoogleScholarGoogle Scholar |
CAS |