Relationship between soil composition and retention capacity of terbumeton onto chalky soils
Achouak El Arfaoui A B , Stéphanie Sayen A D , Eric Marceau C , Lorenzo Stievano C , Emmanuel Guillon A and Michel Couderchet BA Institut de Chimie Moléculaire de Reims (ICMR, UMR CNRS 6229), Groupe Chimie de Coordination, Université de Reims Champagne-Ardenne, BP 1039, F-51687 Reims, Cedex 2, France.
B URVVC-EA 2069, Laboratoire Plantes, Pesticides et Développement Durable, Université de Reims Champagne-Ardenne, BP 1039, F-51687 Reims, Cedex 2, France.
C Laboratoire de Réactivité de Surface, Université Pierre et Marie Curie, UMR CNRS 7609, 4 place Jussieu, F-75252 Paris, Cedex 05, France.
D Corresponding author. Email: stephanie.sayen@univ-reims.fr
Environmental Chemistry 6(3) 245-252 https://doi.org/10.1071/EN08105
Submitted: 13 December 2008 Accepted: 20 May 2009 Published: 18 June 2009
Environmental context. The wide use of pesticides for pest and weed control contributes to their presence in underground and surface waters, which has led to a continuously growing interest in their environmental fate. Soils play a key role in the transfer of these compounds from the sprayer to the water as a result of their capacity to retain pesticides depending on the soil components. The knowledge of soil composition should enable one to predict pesticide behaviour in the environment.
Abstract. Eight calcareous soils of Champagne vineyards (France) were studied to investigate the adsorption of the herbicide terbumeton (TER). A preliminary characterisation of the soil samples using X-ray diffraction (XRD), elemental and textural analyses, revealed a wide range of soil properties for the selected samples. The adsorption isotherms of TER were plotted for all samples. The determination of soil properties, which significantly correlated with the Kd distribution coefficient, allowed identification of organic matter and CaCO3 as the two main soil components that govern the retention of the herbicide. Organic matter was the predominant phase involved in the retention but its role was limited by the presence of calcite. Finally, the ratio of CaCO3 content to organic matter content was proposed as a useful parameter to predict the adsorption of terbumeton in chalky soils. The evolution of Kd as a function of this ratio was successfully described using an empirical model.
Additional keywords: chalky soil, empirical model, herbicide, sorption.
Acknowledgements
The authors thank the ‘Agence de l’Eau Seine-Normandie’, the ‘Ville de Reims’, and the ‘Région Champagne-Ardenne’ for their financial support (program ‘Zerophyto’/AQUAL) and a grant to A. El Arfaoui.
[1]
[2]
J. E. Barbash ,
G. P. Thelin ,
D. W. Kolpin ,
R. J. Gilliom ,
Major herbicides in ground water: results from the National Water-Quality Assessment.
J. Environ. Qual. 2001
, 30, 845.
[Verified 27 May 2009].
[16]
D. Abiven ,
S. Boudesocque ,
E. Guillon ,
M. Couderchet ,
J. Dumonceau ,
M. Aplincourt ,
Sorption of the herbicide terbumeton and its metabolites onto soils. Influence of copper (II).
Environ. Chem. 2006
, 3, 53.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[17]
A. Conrad ,
O. Dedourge ,
R. Cherrier ,
M. Couderchet ,
S. Biagianti ,
Leaching of terbumeton and terbumeton-desethyl from mini-columns packed with soil aggregates in laboratory conditions.
Chemosphere 2006
, 65, 1600.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
K. Flogeac ,
E. Guillon ,
M. Aplincourt ,
E. Marceau ,
L. Stievano ,
P. Beaunier ,
Y. M. Frapart ,
Characterization of soil particles by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR) and transmission electron microscopy (TEM).
Agron. Sustain. Dev. 2005
, 25, 345.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[26]
[27]
[28]
Z. Chen ,
B. Xing ,
W. B. McGill ,
A unified sorption variable for environmental applications of the Freundlich equation.
J. Environ. Qual. 1999
, 28, 1428.
[29]
[30]
R. D. Wauchope ,
S. Yeh ,
J. B. Linders ,
R. Kloskowski ,
K. Tanaka ,
B. Rubin ,
A. Katayama ,
W. Kördel ,
Z. Gerstl ,
M. Lane ,
J. B. Unsworth ,
Pesticide soil sorption parameters: theory, measurement, uses, limitations and reliability.
Pest Manag. Sci. 2002
, 58, 445.
| Crossref |
[31]
L. S. Hundal ,
M. L. Thompson ,
D. A. Laird ,
A. M. Carmo ,
Sorption of phenanthrene by reference smectites.
Environ. Sci. Technol. 2001
, 35, 3456.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[32]
K. D. Jones ,
C. L. Tiller ,
Effect of solution chemistry on the extent of binding of phenanthrene by a soil humic acid: a comparison of dissolved and clay bound humic.
Environ. Sci. Technol. 1999
, 33, 580.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[33]
J. H. Park ,
Y. Feng ,
S. Y. Cho ,
T. C. Voice ,
S. A. Boyd ,
Sorbed atrazine shifts into non-desorbable sites of soil organic matter during aging.
Water Res. 2004
, 38, 3881.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[34]
M. Radosevich ,
S. J. Traina ,
O. H. Tuovinen ,
Atrazine mineralization in laboratory-aged soil microcosms inoculated with s-triazine-degrading bacteria.
J. Environ. Qual. 1997
, 26, 214.
[35]
V. Lechon ,
A. I. Garcia-Valcarcel ,
T. Matienzo ,
C. Sanchez-Brunete ,
J. L. Tadeo ,
Comparison of analytical procedures for determination of soil sorption coefficients of some triazine herbicides.
Commun. Soil Sci. Plant Anal. 1997
, 28, 1835.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[36]
N. A. Kulikova ,
I. V. Perminova ,
Binding of atrazine to humic substances from soil, peat, and coal related to their structure.
Environ. Sci. Technol. 2002
, 36, 3720.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[37]
A. C. Johnson ,
R. J. Hugues ,
P. J. Chilton ,
Potential for aerobic isoproturon biodegradation and sorption in the unsaturated and saturated zones of a chalk aquifer.
J. Contam. Hydrol. 1998
, 30, 281.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[38]
I. D. Kovaios ,
C. A. Paraskeva ,
P. G. Koutsoukous ,
A. C. Payatakes, Adsorption of atrazine on soils: Model study.
J. Colloid Interface Sci. 2006
, 299, 88.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |