Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Relationship between soil composition and retention capacity of terbumeton onto chalky soils

Achouak El Arfaoui A B , Stéphanie Sayen A D , Eric Marceau C , Lorenzo Stievano C , Emmanuel Guillon A and Michel Couderchet B
+ Author Affiliations
- Author Affiliations

A Institut de Chimie Moléculaire de Reims (ICMR, UMR CNRS 6229), Groupe Chimie de Coordination, Université de Reims Champagne-Ardenne, BP 1039, F-51687 Reims, Cedex 2, France.

B URVVC-EA 2069, Laboratoire Plantes, Pesticides et Développement Durable, Université de Reims Champagne-Ardenne, BP 1039, F-51687 Reims, Cedex 2, France.

C Laboratoire de Réactivité de Surface, Université Pierre et Marie Curie, UMR CNRS 7609, 4 place Jussieu, F-75252 Paris, Cedex 05, France.

D Corresponding author. Email: stephanie.sayen@univ-reims.fr

Environmental Chemistry 6(3) 245-252 https://doi.org/10.1071/EN08105
Submitted: 13 December 2008  Accepted: 20 May 2009   Published: 18 June 2009

Environmental context. The wide use of pesticides for pest and weed control contributes to their presence in underground and surface waters, which has led to a continuously growing interest in their environmental fate. Soils play a key role in the transfer of these compounds from the sprayer to the water as a result of their capacity to retain pesticides depending on the soil components. The knowledge of soil composition should enable one to predict pesticide behaviour in the environment.

Abstract. Eight calcareous soils of Champagne vineyards (France) were studied to investigate the adsorption of the herbicide terbumeton (TER). A preliminary characterisation of the soil samples using X-ray diffraction (XRD), elemental and textural analyses, revealed a wide range of soil properties for the selected samples. The adsorption isotherms of TER were plotted for all samples. The determination of soil properties, which significantly correlated with the Kd distribution coefficient, allowed identification of organic matter and CaCO3 as the two main soil components that govern the retention of the herbicide. Organic matter was the predominant phase involved in the retention but its role was limited by the presence of calcite. Finally, the ratio of CaCO3 content to organic matter content was proposed as a useful parameter to predict the adsorption of terbumeton in chalky soils. The evolution of Kd as a function of this ratio was successfully described using an empirical model.

Additional keywords: chalky soil, empirical model, herbicide, sorption.


Acknowledgements

The authors thank the ‘Agence de l’Eau Seine-Normandie’, the ‘Ville de Reims’, and the ‘Région Champagne-Ardenne’ for their financial support (program ‘Zerophyto’/AQUAL) and a grant to A. El Arfaoui.


References


[1]   Environment in the European Union at the turn of the century. Environment assessment report No. 2 1999 (European Environment Agency: Copenhagen, Denmark).

[2]   J. E. Barbash , G. P. Thelin , D. W. Kolpin , R. J. Gilliom , Major herbicides in ground water: results from the National Water-Quality Assessment. J. Environ. Qual. 2001 , 30,  845.
         [Verified 27 May 2009].

[16]   D. Abiven , S. Boudesocque , E. Guillon , M. Couderchet , J. Dumonceau , M. Aplincourt , Sorption of the herbicide terbumeton and its metabolites onto soils. Influence of copper (II). Environ. Chem. 2006 , 3,  53.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[17]   A. Conrad , O. Dedourge , R. Cherrier , M. Couderchet , S. Biagianti , Leaching of terbumeton and terbumeton-desethyl from mini-columns packed with soil aggregates in laboratory conditions. Chemosphere 2006 , 65,  1600.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[18]   Worthing C. R., Hance R. J., (Eds), Part I: Compounds in use or being used, in The Pesticide Manual: A World Compendium, 9th edn 1991 (British Crop Protection Council Publications: Farnham, UK).

[19]   Qualité du sol – Détermination de la distribution granulométrique des particules du sol – Méthode à la pipette, NF X31-107 2003 (Association Française de Normalisation: Paris).

[20]   Qualité du sol – Détermination du pH, NF ISO 10390 2005 (Association Française de Normalisation: Paris).

[21]   Qualité du sol – Dosage du carbone organique par oxydation sulfochromique, NF ISO 14235 1998 (Association Française de Normalisation: Paris).

[22]   Qualité du sol – Méthodes chimiques - Détermination de la capacité d’échange cationique (CEC) et des cations extractibles, NF X31-130 1999 (Association Française de Normalisation: Paris).

[23]   Qualité du sol – Détermination de la teneur en carbonate – Méthode volumétrique, NF ISO 10693 1995 (Association Française de Normalisation: Paris).

[24]   Lutterotti L., Matthies S., Wenk H. R., MAUD (Material Analysis Using Diffraction): a user friendly Java program for Rietveld Texture Analysis and more, in Proceedings of the Twelfth International Conference on Textures of Materials (ICOTOM-12), Montreal, Canada, 9–13 August 1999, 1, pp. 1599–1604 (NRC Research Press of Canada: Montreal, Canada).

[25]   K. Flogeac , E. Guillon , M. Aplincourt , E. Marceau , L. Stievano , P. Beaunier , Y. M. Frapart , Characterization of soil particles by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR) and transmission electron microscopy (TEM). Agron. Sustain. Dev. 2005 , 25,  345.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[26]   Lesan H. M., Bhandari A., Evaluation of atrazine binding to surface soils, in Proceedings of the 2000 Conference on Hazardous Waste Research, Denver, CO, 23–25 May 2000, pp. 76–89. (Great Plains/Rocky Mountain Hazardous Substance Research Center, Kansas State University: Manhattan, KS)

[27]   Boudesocque S., Etude de la rétention du terbuméton et de son principal métabolite le terbuméton déséthyl dans les sols du bassin versant de la Vesle. Influence de la présence du cuivre (II). Application à l’amélioration de la qualité de l’eau 2006, Ph.D. thesis, Université de Reims Champagne-Ardenne, Reims, France.

[28]   Z. Chen , B. Xing , W. B. McGill , A unified sorption variable for environmental applications of the Freundlich equation. J. Environ. Qual. 1999 , 28,  1428.
         open url image1

[29]   Hamaker J. W., Thompson J. M., Adsorption, in Organic Chemicals in Soil Environment (Eds C. A. I. Goring, J. W. Hamaker) 1972, pp. 49–144 (Dekker: New York).

[30]   R. D. Wauchope , S. Yeh , J. B. Linders , R. Kloskowski , K. Tanaka , B. Rubin , A. Katayama , W. Kördel , Z. Gerstl , M. Lane , J. B. Unsworth , Pesticide soil sorption parameters: theory, measurement, uses, limitations and reliability. Pest Manag. Sci. 2002 , 58,  445.
        | Crossref |  open url image1

[31]   L. S. Hundal , M. L. Thompson , D. A. Laird , A. M. Carmo , Sorption of phenanthrene by reference smectites. Environ. Sci. Technol. 2001 , 35,  3456.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[32]   K. D. Jones , C. L. Tiller , Effect of solution chemistry on the extent of binding of phenanthrene by a soil humic acid: a comparison of dissolved and clay bound humic. Environ. Sci. Technol. 1999 , 33,  580.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[33]   J. H. Park , Y. Feng , S. Y. Cho , T. C. Voice , S. A. Boyd , Sorbed atrazine shifts into non-desorbable sites of soil organic matter during aging. Water Res. 2004 , 38,  3881.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[34]   M. Radosevich , S. J. Traina , O. H. Tuovinen , Atrazine mineralization in laboratory-aged soil microcosms inoculated with s-triazine-degrading bacteria. J. Environ. Qual. 1997 , 26,  214.
         open url image1

[35]   V. Lechon , A. I. Garcia-Valcarcel , T. Matienzo , C. Sanchez-Brunete , J. L. Tadeo , Comparison of analytical procedures for determination of soil sorption coefficients of some triazine herbicides. Commun. Soil Sci. Plant Anal. 1997 , 28,  1835.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[36]   N. A. Kulikova , I. V. Perminova , Binding of atrazine to humic substances from soil, peat, and coal related to their structure. Environ. Sci. Technol. 2002 , 36,  3720.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[37]   A. C. Johnson , R. J. Hugues , P. J. Chilton , Potential for aerobic isoproturon biodegradation and sorption in the unsaturated and saturated zones of a chalk aquifer. J. Contam. Hydrol. 1998 , 30,  281.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[38]   I. D. Kovaios , C. A. Paraskeva , P. G. Koutsoukous , A. C. Payatakes, Adsorption of atrazine on soils: Model study. J. Colloid Interface Sci. 2006 , 299,  88.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1