Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Arsenic speciation in bodily fluids of harbor seals (Phoca vitulina) and harbor porpoises (Phocoena phocoena)

Linda Kuenstl A , Simone Griesel B , Andreas Prange B and Walter Goessler A C
+ Author Affiliations
- Author Affiliations

A Institute of Chemistry – Analytical Chemistry, Karl-Franzens University Graz, Universitätsplatz 1, 8010 Graz, Austria.

B Institute for Coastal Research, GKSS-Research Centre Geesthacht, Max-Planck-Straße 1, 21502 Geesthacht, Germany.

C Corresponding author. Email: walter.goessler@uni-graz.at

Environmental Chemistry 6(4) 319-327 https://doi.org/10.1071/EN08079
Submitted: 15 October 2008  Accepted: 19 June 2009   Published: 25 August 2009

Environmental context. Marine mammals play an important role in their ecosystem. As top predators they ingest a lot of arsenic from their food. In the present study bodily fluids and tissue samples of harbor seals and porpoises were investigated for arsenic speciation in order to obtain a clearer picture on their feeding habits and consequently a better understanding of the mass mortality of the animals in the North and Baltic Sea.

Abstract. The total arsenic concentrations and arsenic speciation in various tissues and bodily fluids of harbor seals (Phoca vitulina) and harbor porpoises (Phocoena phocoena) were determined to obtain information about the feeding habits of these endangered marine mammals. Lower whole blood arsenic concentrations were found for fish-fed (median: 71 μg As L–1) than for free ranging seals (median: 190 μg As L–1). In porpoise liver the arsenic concentrations were higher from carcasses found in the North Sea (median: 421 μg As kg–1 wet mass) than from those inhabiting the Baltic Sea or found in the River Elbe (median: 250 μg As kg–1). The arsenic speciation in the urine, plasma, and gastric juice of seals and the urine of porpoises, collected from animals at different areas in the North and Baltic Seas, revealed the following picture: arsenobetaine was the predominant arsenic species in all measured bodily fluids. Plasma samples of seals contained only dimethylarsinic acid as additional species. In gastric juice arsenocholine and trimethylarsine oxide were found at trace concentrations. Several arsenic compounds were identified in mammals’ urine, the major being dimethylarsinic acid and thio-dimethylarsinic acid but high variability was observed in the relative proportions of each. No correlation between degree of decay and arsenic speciation in urine could be found. This is very useful information as older carcasses can also be included in future studies. Our preliminary results are promising to obtain an insight into feeding habits of seals and porpoises by the arsenic speciation in urine.

Additional keywords: arsenic speciation, HPLC-ICPMS, marine mammals, plasma, urine.


Acknowledgements

The authors thank all participants of the seal catches: Amt für ländliche Räume Schleswig-Holstein, Schleswig-Holstein Wadden Sea National Park Office and Service, Research and Technology Centre Büsum (FTZ), Leibniz Institute of Marine Science at Kiel University (IFM-GEOMAR), Kai Abt, Fisheries and Maritime Museum Esbjerg, crew of the ship Saibling and the Danish Crew. The seal catches were financially supported by the German Federal Ministry for the Environmental, Nature Conservation and Nuclear Safety, and the SchleswigHolstein Wadden Sea National Park Office. The authors also thank all colleagues from the GKSS, FTZ, Jörg Driver, and give special thanks to Tanja Rosenberger and the colleagues from the Seal Centre Fiedrichskoog for support with the sampling.


References


[1]   Francesconi K. A., Edmonds J. S., Arsenic and marine organisms, in Advances in Inorganic Chemistry (Ed. A. G. Sykes) 1997, Vol. 44, pp. 147–189 (Harcourt Publishers).

[2]   W. Goessler , W. Maher , K. J. Irgolic , D. Kuehnelt , C. Schlagenhaufen , T. Kaise , Arsenic compounds in a marine food chain. Fresenius J. Anal. Chem. 1997 , 359,  434.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[3]   R. Kubota , T. Kunito , S. Tanabe , Arsenic accumulation in the liver tissue of marine mammals. Environ. Pollut. 2001 , 115,  303.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[4]   U. Sievers , Stomach content-analysis in the harbor seal (Phoca vitulina) from the Schleswig-Holstein Wadden Sea. Zool. Anz. 1989 , 222,  249.
         open url image1

[5]   P. Szefer , I. Zdrojewska , J. Jensen , C. Lockyer , K. Skora , I. Kuklik , M. Malinga , Intercomparison studies on distribution and coassociations of heavy metals in liver, kidney, and muscle of harbor porpoise, Phocoena phocoena, from southern Baltic Sea and coastal waters of Denmark and Greenland. Arch. Environ. Contam. Toxicol. 2002 , 42,  508.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[6]   W. Maher , E. Butler , Arsenic in the marine environment. Appl. Organomet. Chem. 1988 , 2,  191.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[7]   Eisler R., Arsenic, in Handbook of Chemical Risk Assessment 2000, Ch. 28, pp. 1501–1566 (Lewis: Boca Raton, FL).

[8]   S. Griesel , A. Kakuschke , U. Siebert , A. Prange , Trace element concentrations in blood of harbor seals (Phoca vitulina) from the Wadden Sea. Sci. Total Environ. 2008 , 392,  313.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[9]   E. H. Larsen , K. A. Francesconi , Arsenic concentrations correlate with salinity for fish taken from the North Sea and Baltic waters. J. Mar. Biol. Assoc. U.K. 2003 , 83,  283.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[10]   T. Kunito , R. Kubota , J. Fujihara , T. Agusa , S. Tanabe , Arsenic in marine mammals, seabirds, and sea turtles. Rev. Environ. Contam. Toxicol. 2008 , 195,  31.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[11]   T. Jensen , M. van de Bildt , H. H. Dietz , T. H. Andersen , A. S. Hammer , T. Kuiken , A. Osterhaus , Another phocine distemper outbreak in Europe. Science 2002 , 297,  209.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[12]   P. R. Becker , E. A. Mackey , R. Demiralp , M. M. Schantz , B. J. Koster , S. A. Wise , Concentrations of chlorinated hydrocarbons and trace elements in marine mammal tissues archived in the U.S. National Biomonitoring Specimen Bank. Chemosphere 1997 , 34,  2067.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[13]   K. L. Tilbury , J. E. Stein , J. P. Meador , C. A. Krone , S. L. Chan , Chemical contaminants in harbor porpoise (Phocoena phocoena) from the north Atlantic coast: tissue concentrations and intra- and inter-organ distribution. Chemosphere 1997 , 34,  2159.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[14]   E. H. Larsen , J. Engman , J. J. Sloth , M. Hansen , J. Jorhem , Determination of inorganic arsenic in white fish using microwave-assisted alkaline alcoholic sample dissolution and HPLC-ICP-MS. Anal. Bioanal. Chem. 2005 , 381,  339.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[15]   R. Kubota , T. Kunito , J. Fujihara , S. Tanabe , J. Yang , N. Miyazaki , Placental transfer of arsenic to fetus of Dall’s porpoises (Phocoenoides dalli). Mar. Pollut. Bull. 2005 , 51,  845.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[16]   B. Fängström , S. Moore , B. Nermell , L. Kuenstl , W. Goessler , M. Grander , I. Kabir , B. Palm , et al. Breast-feeding protects against arsenic exposure in Bangladeshi infants. Environ. Health Perspect. 2008 , 116,  963.
        | PubMed |  open url image1

[17]   K. Ebisuda , T. Kunito , R. Kubota , S. Tanabe , Arsenic concentrations and speciation in the tissues of ringed seals (Phoca ispida) from Pangnirtung, Canada. Appl. Organomet. Chem. 2002 , 16,  451.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[18]   S. Foster , W. Maher , F. Krikowa , Changes in proportions of arsenic species within an Ecklonia radiata food chain. Environ. Chem. 2008 , 5,  176.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[19]   W. Maher , W. Goessler , J. Kirby , G. Raber , Arsenic concentrations and speciation in the tissues and blood of sea mullet (Mugil cephalus) from Lake Macquarie NSW, Australia. Mar. Chem. 1999 , 68,  169.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[20]   V. Nischwitz , S. A. Pergantis , Mapping of arsenic species and identification of a novel arsenosugar in giant clams Tridacna maxima and Tridacna derasa using advanced mass spectrometric techniques. Environ. Chem. 2007 , 4,  187.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[21]   Francesconi K. A., Kuehnelt D., Arsenic compounds in the environment, in Environmental Chemistry of Arsenic (Ed. W. T. Frankenberger) 2002, Ch. 3, pp. 51–94 (Marcel Dekker Inc.: New York).

[22]   E. Schmeisser , W. Goessler , K. A. Francesconi , Human metabolism of arsenolipids present in cod liver. Anal. Bioanal. Chem. 2006 , 385,  367.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[23]   H. R. Hansen , A. Raab , M. Jaspars , B. F. Milne , J. Feldmann , Sulfur-containing arsenicals mistaken for dimethylarsinous acid [DMA(III)] and identified as a natural metabolite in urine: Major implications for studies on arsenic metabolism and toxicity. Chem. Res. Toxicol. 2004 , 17,  1086.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[24]   Z. Šlejkovec , I. Falnoga , W. Goessler , J. T. van Elteren , R. Raml , H. Podgornik , P. Cernelc , Analytical artefacts in the speciation of arsenic in clinical samples. Anal. Chim. Acta 2008 , 607,  83.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[25]   H. Naranmandura , K. T. Suzuki , Identification of the major arsenic-binding protein in rat plasma as the ternary dimethylarsinous-hemoglobin-haptoglobin complex. Chem. Res. Toxicol. 2008 , 21,  678.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[26]   W. Goessler , A. Rudorfer , E. A. Mackey , P. R. Becker , K. J. Irgolic , Determination of arsenic compounds in marine mammals with HPLC and an inductively coupled plasma mass spectrometer as element-specific detector. Appl. Organomet. Chem. 1998 , 12,  491.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[27]   K. Hanaoka , W. Goessler , K. Yoshida , Y. Fujitaka , T. Kaise , K. J. Irgolic , Arsenocholine- and dimethylated arsenic-containing lipids in starspotted shark Mustelus manazo. Appl. Organomet. Chem. 1999 , 13,  765.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[28]   K. A. Francesconi , J. S. Edmonds , R. V. Stick , Accumulation of arsenic in yelloweye mullet (Aldrichetta forsteri) following oral administration of organoarsenic compounds and arsenate. Sci. Total Environ. 1989 , 79,  59.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[29]   K. A. Francesconi , S. Khokiattiwong , W. Goessler , S. N. Pedersen , M. Pavkov , A new arsenobetaine from marine organisms identified by liquid chromatography-mass spectrometry. Chem. Commun. 2000 , 12,  1083.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[30]   A. Geiszinger , A. Khokiattiwong , W. Goessler , K. A. Francesconi , Identification of the new arsenic-containing betaine, trimethylarsoniopropionate, in tissues of a stranded sperm whale Physeter catodon. J. Mar. Biol. Assoc. U.K. 2002 , 82,  165.
        |  CAS |  open url image1

[31]   E. Schmeisser , A. Rumpler , M. Kollroser , G. Rechberger , W. Goessler , K. A. Francesconi , Arsenic fatty acids are human urinary metabolites of arsenolipids present in cod liver. Angew. Chem. Int. Ed. 2006 , 45,  150.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[32]   J. J. Sloth , E. H. Larsen , K. Julshamn , Report on three aliphatic dimethylarsinoyl compounds as common minor constituents in marine samples. An investigation using high-performance liquid chromatography/inductively coupled plasma mass spectrometry and electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2005 , 19,  227.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[33]   R. Raml , A. Rumpler , W. Goessler , M. Vahter , L. Li , T. Ochi , K. A. Francesconi , Thio-dimethylarsinate is a common metabolite in urine samples from arsenic-exposed woman in Bangladesh. Toxicol. Appl. Pharmacol. 2007 , 222,  374.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[34]   K. A. Francesconi , J. S. Edmonds , Arsenic species in marine samples. Croat. Chem. Acta 1998 , 71,  343.
        |  CAS |  open url image1

[35]   McShane W. J., The synthesis and characterization of arsenocholine and related compounds 1982, Ph.D. Thesis, Department of Chemistry, Texas A&M University, College Station, Texas, USA.

[36]   A. Merijanian , R. A. Zingaro , Arsine oxides. Inorg. Chem. 1966 , 5,  187.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[37]   P. Traar , K. A. Francesconi , Synthetic routes for naturally-occurring arsenic-containing ribosides. Tetrahedron Lett. 2006 , 47,  5293.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[38]   M. Kahn , R. Raml , E. Schmeisser , B. Vallant , K. A. Francesconi , W. Goessler , Two novel thio-arsenosugars in scallops identified with HPLC-ICPMS and HPLC-ESMS. Environ. Chem. 2005 , 2,  171.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[39]   R. Raml , W. Goessler , K. A. Francesconi , Improved chromatographic separation of thio-arsenic compounds by reversed-phase high performance liquid chromatography-inductively coupled plasma mass spectrometry. J. Chromatogr. A 2006 , 1128,  164.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[40]   I. B. Rodriguez , K. A. Francesconi , W. Goessler , A rapid method for the determination of total arsenic in biological digests and aqueous extracts by flow injection inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2008 , 23,  235.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[41]   M. Kovačevič , W. Goessler , Direct introduction of volatile carbon compounds into the spray chamber of an inductively coupled plasma mass spectrometer: Sensitivity enhancement for selenium. Spectrochim. Acta B 2005 , 60,  1357.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1