Investigating biogenic heterogeneity in coastal sediments with two-dimensional measurements of iron(II) and sulfide
David Robertson A , David T. Welsh A and Peter R. Teasdale A BA Australian Rivers Institute, Griffith University, Gold Coast campus, Qld 4222, Australia.
B Corresponding author. Email: p.teasdale@griffith.edu.au
Environmental Chemistry 6(1) 60-69 https://doi.org/10.1071/EN08059
Submitted: 4 September 2008 Accepted: 16 December 2008 Published: 3 March 2009
Environmental context. Microbial respiration generally occurs in distinct layers within coastal sediment, producing high porewater iron or sulfide concentrations, although this layering is dramatically modified by the activities of sediment-dwelling organisms. The present study describes use of a new technique to simultaneously measure two-dimensional concentrations of porewater iron and sulfide at millimetre resolution, allowing the patchiness of patterns of microbial respiration in sediment to be clearly observed. The measurements generally supported a conceptual model predicting the effects of animal burrows and seagrass roots on the porewater iron and sulfide distributions, although the addition of organic matter provided some unexpected observations that require further investigation.
Abstract. One of the most powerful predictive tools in sediment biogeochemistry is the electron acceptor layering model, which describes the order in which oxidised compounds are reduced by successions of respiring microbial populations, and how this layering is influenced by benthic macro-organism activity. However, techniques allowing convenient determination of heterogeneous distributions of reduced substances, such as iron(II) and sulfide, have been lacking. A combined diffusive gradients in thin films–diffusive equilibrium in thin films technique was used to quantitatively measure the two-dimensional iron(II) and sulfide distributions at high resolution in the vicinity of various sediment features, including macrofauna burrows, particulate organic matter and macrophyte roots. Substantial heterogeneity was observed for both analytes in all probes, especially in the vicinity of seagrass roots and particulate organic matter. Measured distributions tended to follow the general patterns predicted by the tertiary electron acceptor layering model. However, there was unexpected overlap of sulfide and iron(II) distributions at the millimetre to centimetre scale in several samples from different sediments, notably the more complex sediments containing particulate organic matter and seagrass roots. The cause of such overlap is unclear and further study is necessary to elucidate how such distributions can occur.
Additional keywords: benthic macrofauna, biogeochemistry, high-resolution measurements, microcosm, simultaneous DET and DGT.
Acknowledgements
The present research was supported by a grant from the Australian Research Council’s Discovery Projects funding scheme (project no. DP0559935). David Robertson is grateful to the Australian Rivers Institute for financial assistance in the form of an Honours Bursary and an Honours publication scholarship. The relevant and detailed comments on the manuscript by two anonymous reviewers are appreciated.
[1]
[2]
E. Kristensen ,
Organic matter diagenesis at the oxic/anoxic interface in coastal marine sediments, with emphasis on the role of burrowing animals.
Hydrobiologia 2000
, 426, 1.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[3]
[4]
S. K. Konovalov ,
G. W. Luther ,
M. Yucel ,
Porewater redox species and processes in the Black Sea sediments.
Chem. Geol. 2007
, 245, 254.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[5]
C. Laskov ,
C. Herzog ,
J. Lewandowski ,
M. Hupfer ,
Miniaturised photometrical methods for the rapid analysis of phosphate, ammonium, ferrous iron and sulfate in pore water of freshwater sediments.
Limnol. Oceanogr. Methods 2007
, 5, 63.
|
CAS |
[6]
E. Viollier ,
C. Rabouille ,
S. Apitz ,
E. Breuer ,
G. Chaillou ,
K. Dedieu ,
Y. Furukawa ,
C. Grenz ,
P. Hall ,
F. Janssen ,
Benthic biogeochemistry: state of the art technologies and guidelines for the future of in situ survey.
J. Exp. Mar. Biol. Ecol. 2003
, 285–286, 5.
| Crossref | GoogleScholarGoogle Scholar |
[7]
P. Anschutz ,
B. Sundby ,
L. Lefrancois ,
G. W. Luther III ,
A. Mucci ,
Interactions between metal oxides and species of nitrogen and iodine in bioturbated marine sediments.
Geochim. Cosmochim. Acta 2000
, 64, 2751.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[8]
N. Revsbech ,
B. Barker Jorgensen ,
T. Blackburn ,
Oxygen in the sea bottom measured with a microelectrode.
Science 1980
, 207, 1355.
|
CAS |
[9]
G. W. Luther ,
P. J. Brendel ,
B. L. Lewis ,
N. Silverberg ,
D. B. Nuzzio ,
Simultaneous measurement of O2, Mn, Fe, I–, and S(-II) in marine pore waters with a solid-state voltammetric microelectrode.
Limnol. Oceanogr. 1998
, 43, 325.
|
CAS |
[10]
R. Glud ,
N. Ramsing ,
J. Gundersen ,
I. Klimant ,
Planar optodes: a new tool for fine scale measurements of two-dimensional O2 distribution in benthic communities.
Mar. Ecol. Prog. Ser. 1996
, 140, 217.
| Crossref | GoogleScholarGoogle Scholar |
[11]
K. Oguri ,
H. Kitazato ,
R. N. Glud ,
Platinum octaethylporphyrin based planar optodes combined with an UV-LED excitation light source: an ideal tool for high-resolution O2 imaging in O2-depleted environments.
Mar. Chem. 2006
, 100, 95.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[12]
Q. Zhu ,
R. C. Aller ,
Y. Fan ,
A new ratiometric, planar fluorosensor for measuring high-resolution, two-dimensional pCO2 distributions in marine sediments.
Mar. Chem. 2006
, 101, 40.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[13]
Q. Zhu ,
R. C. Aller ,
Y. Fan ,
Two-dimensional pH distributions and dynamics in bioturbated marine sediments.
Geochim. Cosmochim. Acta 2006
, 70, 4933.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[14]
P. Teasdale ,
S. Hayward ,
W. Davison ,
In situ, high-resolution measurement of dissolved sulfide using diffusive gradients in thin films with computer-imaging densitometry.
Anal. Chem. 1999
, 71, 2186.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[15]
A. Stockdale ,
W. Davison ,
H. Zhang ,
High-resolution two-dimensional quantitative analysis of phosphorus, vanadium and arsenic, and qualitative analysis of sulphide, in a freshwater sediment.
Environ. Chem. 2008
, 5, 143.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[16]
C. Devries ,
F. Wang ,
In situ two-dimensional high-resolution profiling of sulfide in sediment interstitial waters.
Environ. Sci. Technol. 2003
, 37, 792.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[17]
O. Nielsen ,
E. Kristensen ,
M. Holmer ,
Impact of Arenicola marina (Polychaeta) on sediment sulfur dynamics.
Aquat. Microb. Ecol. 2003
, 33, 95.
| Crossref | GoogleScholarGoogle Scholar |
[18]
D. Jezequel ,
R. Brayner ,
E. Metzger ,
E. Viollier ,
F. Prevot ,
F. Fievet ,
Two-dimensional determination of dissolved iron and sulfur species in marine sediment pore-waters by thin-film based imaging. Thau lagoon (France).
Estuar. Coast. Shelf Sci. 2007
, 72, 420.
| Crossref | GoogleScholarGoogle Scholar |
[19]
D. Robertson ,
P. R. Teasdale ,
D. T. Welsh ,
A novel gel-based technique for the high resolution, two-dimensional determination of iron(II) and sulfide in sediment.
Limnol. Oceanogr. Methods 2008
, 6, 502.
[20]
H. Zhang ,
W. Davison ,
Performance characteristics of diffusion gradients in thin films for the in situ measurement of trace metals in aqueous solution.
Anal. Chem. 1995
, 67, 3391.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[21]
Y.-H. Li ,
S. Gregory ,
Diffusion of ions in sea water and in deep-sea sediments.
Geochim. Cosmochim. Acta 1974
, 38, 703.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[22]
[23]
C. Naylor ,
W. Davison ,
M. Motelica-Heino ,
G. A. Van Den Berg ,
L. M. Van Der Heijdt ,
Potential kinetic availability of metals in sulphidic freshwater sediments.
Sci. Total Environ. 2006
, 357, 208.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[24]
R. J. K. Dunn ,
C. J. Lemckert ,
P. R. Teasdale ,
D. T. Welsh ,
Distribution of nutrients in surface and sub-surface sediments of Coombabah Lake, southern Moreton Bay (Australia).
Mar. Pollut. Bull. 2007
, 54, 606.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[25]
S. Forster ,
G. Graf ,
Continuously measured changes in redox potential influenced by oxygen penetrating from burrows of Callianassa subterranea.
Hydrobiologia 1992
, 235–236, 527.
| Crossref | GoogleScholarGoogle Scholar |
[26]
F. Wenzhöfer ,
R. N. Glud ,
Small-scale spatial and temporal variability in coastal benthic O.
Limnol. Oceanogr. 2004
, 49, 1471.
[27]
D. Rickard ,
The solubility of FeS.
Geochim. Cosmochim. Acta 2006
, 70, 5779.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[28]
D. Rickard ,
G. W. Luther ,
Chemistry of iron sulfides.
Chem. Rev. 2007
, 107, 514.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[29]
W. Davison ,
N. Phillips ,
B. Tabner ,
Soluble iron sulfide species in natural waters: reappraisal of their stoichiometry and stability constants.
Aquat. Sci. 1999
, 61, 23.
|
CAS |
| Crossref |
[30]
E. D. Burton ,
L. A. Sullivan ,
R. T. Bush ,
B. Powell ,
Iron sulfide and trace element behaviour in sediments of Coombabah Lake, southern Moreton Bay (Australia).
Mar. Pollut. Bull. 2008
, 56, 1353.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[31]
H. Stahl ,
A. Glud ,
C. R. Schroeder ,
I. Klimant ,
A. Tengberg ,
R. N. Glud ,
Time-resolved pH imaging in marine sediments with a luminescent planar optode.
Limnol. Oceanogr. Methods 2006
, 4, 336.
|
CAS |
[32]
O. Pedersen ,
J. Borum ,
C. Duarte ,
M. Fortes ,
Oxygen dynamics in the rhizosphere of Cymodocea rotundata.
Mar. Ecol. Prog. Ser. 1998
, 169, 283.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[33]
M. S. Frederiksen ,
R. N. Glud ,
Oxygen dynamics in the rhizosphere of Zostera marina: a two-dimensional planar optode study.
Limnol. Oceanogr. 2006
, 51, 1072.
[34]
M. F. Isaksen ,
K. Finster ,
Sulphate reduction in the root zone of the seagrass Zostera noltii on the intertidal flats of a coastal lagoon (Arcachon, France).
Mar. Ecol. Prog. Ser. 1996
, 137, 187.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[35]
L. B. Nielsen ,
K. Finster ,
D. T. Welsh ,
A. Donelly ,
R. A. Herbert ,
R. de Wit ,
B. A. A. Lomstein ,
Sulphate reduction and nitrogen fixation rates associated with roots, rhizomes and sediments from Zostera noltii and Spartina maritima meadows.
Environ. Microbiol. 2001
, 3, 63.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[36]
E. Kristensen ,
D. Alongi ,
Control by fiddler crabs (Uca vocans) and plant roots (Avicennia marina) on carbon, iron, and sulfur biogeochemistry in mangrove sediment.
Limnol. Oceanogr. 2006
, 51, 1557.
|
CAS |
[37]
M. Motelica-Heino ,
C. Naylor ,
H. Zhang ,
W. Davison ,
Simultaneous release of metals and sulfide in lacustrine sediment.
Environ. Sci. Technol. 2003
, 37, 4374.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[38]
B. Gribsholt ,
J. Kostka ,
E. Kristensen ,
Impact of fiddler crabs and plant roots on sediment biogeochemistry in a Georgia saltmarsh.
Mar. Ecol. Prog. Ser. 2003
, 259, 237.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[39]
W. Davison ,
H. Zhang ,
G. Grime ,
Performance characteristics of gel probes used for measuring the chemistry of pore waters.
Environ. Sci. Technol. 1994
, 28, 1623.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[40]
M. Harper ,
W. Davison ,
W. Tych ,
Temporal, spatial, and resolution constraints for in situ sampling devices using diffusional equilibration: dialysis and DET.
Environ. Sci. Technol. 1997
, 31, 3110.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[41]
M. Harper ,
W. Davison ,
W. Tych ,
DIFS – a modelling and simulation tool for DGT-induced trace metal remobilisation in sediments and soils.
Environ. Model. Softw. 2000
, 15, 55.
| Crossref | GoogleScholarGoogle Scholar |