Relationship between oxidative degradation of 2-mercaptobenzothiazole and physicochemical properties of manganese (hydro)oxides
C. S. Liu A C , L. J. Zhang A , C. H. Feng B , C. A. Wu A , F. B. Li A D and X. Z. Li CA Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, No. 808, Tianyuan Road, Guangzhou 510650, China.
B School of Chemistry and Chemical Engineering, South China University of Technology, No. 381, Wushan Road, Guangzhou 510640, China.
C Department of Civil and Structural Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China.
D Corresponding author. Email: cefbli@soil.gd.cn
Environmental Chemistry 6(1) 83-92 https://doi.org/10.1071/EN08053
Submitted: 11 August 2008 Accepted: 8 January 2009 Published: 3 March 2009
Environmental context. Manganese (hydro)oxide is one kind of the most important natural minerals that are capable of oxidising organic contaminants with a wide range of functionality. However, the oxidative reactivity of manganese (hydro)oxides for organic pollutant degradation may depend on their individual physicochemical properties. It is important to determine a relationship between their oxidative reactivity and physicochemical properties.
Abstract. The oxidative reactivity of manganese (hydro)oxides is important for geochemical transformation of organic pollutants. Here, 2-mercaptobenzothiazole (MBT) degradation by six manganese (hydro)oxides, including γ-MnOOH, β-MnO2, α-MnO2, γ-Mn2O3, δ-MnO2, and MO-700, were investigated with different initial MBT concentrations, manganese (hydro)oxide dosages and pH values. The results show the oxidative reactivity of manganese (hydro)oxides towards MBT degradation strongly depends on their physicochemical properties. Specific surface area and reduction potential of manganese (hydro)oxides were positively correlated with MBT degradation rates, whereas pH at the point of zero charge (pHPZC) of manganese (hydro)oxides and apparent activation energy (Ea) were negatively correlated. A high average oxidation state with the same chemical valence always corresponds to high oxidative reactivity. Such findings provide some insights into understanding the transport and fate of organic pollutants in the presence of different manganese (hydro)oxides in the natural environment.
Additional keywords: correlative analysis, manganese oxides, organic pollutants, oxidation.
Acknowledgements
The work was financially supported by the National Natural Science Foundation of People’s Republic of China (20577007).
[1]
P. A. Hansson ,
S. E. Svensson ,
F. Hallefalt ,
H. Diedrichs ,
Nutrient and cost optimization of fertilizing strategies for Salix including use of organic waste products.
Biomass Bioenergy 1999
, 17, 377.
| Crossref | GoogleScholarGoogle Scholar |
[2]
D. A. Bright ,
N. Healey ,
Contaminant risks from biosolids land application: contemporary organic contaminant levels in digested sewage sludge from five treatment plants in Greater Vancouver, British Columbia.
Environ. Pollut. 2003
, 126, 39.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[3]
P. M. Huang ,
M. K. Wang ,
C. Y. Chiu ,
Soil mineral–organic matter–microbe interactions: impacts on biogeochemical processes and biodiversity in soils.
Pedobiologia 2005
, 49, 609.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[4]
K. J. Doick ,
P. Burauel ,
K. C. Jones ,
K. T. Semple ,
Distribution of aged 14C-PCB and 14C-PAH residues in particle-size and humic fractions of an agricultural soil.
Environ. Sci. Technol. 2005
, 39, 6575.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[5]
P. W. Abrahams ,
Soils: their implications to human health.
Sci. Total Environ. 2002
, 291, 1.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[6]
S. Paria ,
Surfactant-enhanced remediation of organic contaminated soil and water.
Adv. Colloid Interface Sci. 2008
, 138, 24.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[7]
A. R. Zimmerman ,
K. W. Goyne ,
J. Chorover ,
S. Komarneni ,
S. L. Brantley ,
Mineral mesopore effects on nitrogenous organic matter adsorption.
Org. Geochem. 2004
, 35, 355.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[8]
H. C. Zhang ,
C. H. Huang ,
Oxidative transformation of fluoroquinolone antibacterial agents and structurally related amines by manganese oxide.
Environ. Sci. Technol. 2005
, 39, 4474.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[9]
H. Li ,
L. S. Lee ,
D. G. Schulze ,
C. A. Guest ,
Role of soil manganese in the oxidation of aromatic amines.
Environ. Sci. Technol. 2003
, 37, 2686.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[10]
L. Zhao ,
P. Peng ,
Z. Yu ,
W. Huang ,
S. Feng ,
H. Zhou ,
Oxidation kinetics of pentachlorophenol by manganese dioxide.
Environ. Toxicol. Chem. 2006
, 25, 2912.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[11]
H. C. Zhang ,
C. H. Huang ,
Oxidative transformation of triclosan and chlorophene by manganese oxides.
Environ. Sci. Technol. 2003
, 37, 2421.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[12]
J. Klausen ,
S. B. Haderlein ,
R. P. Schwarzenbach ,
Oxidation of substituted anilines by aqueous MnO2: effect of co-solutes on initial and quasi-steady-state kinetics.
Environ. Sci. Technol. 1997
, 31, 2642.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[13]
S. Laha ,
R. G. Luthy ,
Oxidation of aniline and other primary aromatic amines by manganese dioxide.
Environ. Sci. Technol. 1990
, 24, 363.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[14]
J. L. Yu ,
P. E. Savage ,
Kinetics of MnO2-catalyzed acetic acid oxidation in supercritical water.
Ind. Eng. Chem. Res. 2000
, 39, 4014.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[15]
K. F. Rubert ,
J. A. Pedersen ,
Kinetics of oxytetracycline reaction with a hydrous manganese oxide.
Environ. Sci. Technol. 2006
, 40, 7216.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[16]
J. Y. Shin ,
M. A. Cheney ,
Abiotic transformation of atrazine in aqueous suspension of four synthetic manganese oxides.
Colloid Surf. A 2004
, 242, 85.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[17]
K. E. Kress ,
Spectrophotometric analysis of accelerator-rubber mixtures.
Anal. Chem. 1951
, 23, 313.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[18]
S. Ching ,
D. J. Petrovay ,
M. L. Jorgensen ,
S. L. Suib ,
Sol-gel synthesis of layered birnessite-type manganese oxides.
Inorg. Chem. 1997
, 36, 883.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[19]
W. X. Zhang ,
Z. H. Yang ,
Y. Liu ,
S. P. Tang ,
X. Z. Han ,
M. Chen ,
Controlled synthesis of Mn3O4 nanocrystallites and MnOOH nanorods by a solvothermal method.
J. Cryst. Growth 2004
, 263, 394.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[20]
F. B. Li ,
C. S. Liu ,
C. H. Liang ,
X. Z. Li ,
L. J. Zhang ,
The oxidative degradation of 2-mercaptobenzothiazole at the interface of β-MnO2 and water.
J. Hazard. Mater. 2008
, 154, 1098.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[21]
J. G. Yu ,
J. C. Yu ,
M. K. P. Leung ,
W. K. Ho ,
B. Cheng ,
X. J. Zhao ,
J. C. Zhao ,
Effects of acidic and basic hydrolysis catalysts on the photocatalytic activity and microstructures of bimodal mesoporous titania.
J. Catal. 2003
, 217, 69.
|
CAS |
[22]
G. G. Xia ,
W. Tong ,
E. N. Tolentino ,
N. G. Duan ,
S. L. Brock ,
J. Y. Wang ,
S. L. Suib ,
T. Ressler ,
Synthesis and characterization of nanofibrous sodium manganese oxide with a 2 × 4 tunnel structure.
Chem. Mater. 2001
, 13, 1585.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[23]
W. F. Tan ,
S. J. Lu ,
F. Liu ,
X. H. Feng ,
J. Z. He ,
L. K. Koopall ,
Determination of the point-of-zero charge of manganese oxides with different methods including an improved salt titration method.
Soil Sci. 2008
, 173, 277.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[24]
J. D. Danforth ,
J. Indiveri ,
Activation energies and frequency factors for the dehydrochlorination of polyvinyl-chloride from the Arrhenius equation.
J. Phys. Chem. 1983
, 87, 5376.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[25]
C. K. Lee ,
C. S. Tsay ,
Surface fractal dimensions of alumina and aluminium borate from nitrogen isotherms.
J. Phys. Chem. B 1998
, 102, 4123.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[26]
M. F. Lengke ,
R. N. Tempel ,
Natural realgar and amorphous AsS oxidation kinetics.
Geochim. Cosmochim. Acta 2003
, 67, 859.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[27]
S. Murphy ,
G. B. Schuster ,
A kinetic method for determination of redox potentials – oxidation of tetraarylborates.
J. Phys. Chem. 1995
, 99, 511.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[28]
[29]
R. Woods ,
G. A. Hope ,
K. Watling ,
Surface-enhanced Raman scattering spectroscopic studies of the adsorption of flotation collectors.
Miner. Eng. 2000
, 13, 345.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[30]
[31]