Assessing toxicity of mining effluents: equilibrium- and kinetics-based metal speciation and algal bioassay
Yamini Gopalapillai A B , Chuni L. Chakrabarti A D and David R. S. Lean CA Ottawa-Carleton Chemistry Institute, Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
B Present address: University of Guelph, Land Resource Science, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
C Department of Biology, University of Ottawa, 30 Marie Currie Private, PO Box 450, Station A, Ottawa, ON, K1N 6N5, Canada.
D Corresponding author. Email: chuni_chakrabarti@carleton.ca
Environmental Chemistry 5(4) 307-315 https://doi.org/10.1071/EN08027
Submitted: 23 April 2008 Accepted: 15 July 2008 Published: 19 August 2008
Environmental context. The release of mining effluents exposes natural waters to excess metals and thereby threatens both human and environmental health. The present study explores the toxicity of aqueous mining effluents collected from a mining area in Sudbury (Ontario, Canada), using two different methods for determination of metal speciation, and an algal toxicity study. The results show reasonable correlation between metal speciation and the observed toxicity and suggest the importance of taking into account other factors related to water quality criteria such as nutrient concentrations, diluent water and presence of other toxic metals that can greatly influence the toxicological result.
Abstract. The present study explores the toxicity of aqueous mining and municipal effluents from the Sudbury area (Canada) using equilibrium- and kinetics-based estimates of metal speciation and chronic toxicity studies using algae (Pseudokirchneriella subcapitata). Free metal ion concentration was determined by the Ion Exchange Technique (IET) and a computer speciation code, Windermere Humic Aqueous Model (WHAM) VI. Labile metal concentration was determined using the Competing Ligand Exchange Method. In general, no correlation was found between the observed IC25 (concentration of test substance that inhibits growth of organism by 25%) and the [Ni]labile, [Ni2+]IET or [Ni2+]WHAM, probably because of contributions by other metals such as Cu and Zn being also significant. Reasonable correlation (r2 = 0.7575) was found when the observed toxicity was compared with the sum of free metal ions of Cu, Ni, and Zn predicted by WHAM. The results of the present study reveal the importance of taking into account other factors related to water quality criteria such as nutrient concentrations, diluent water, and the presence of other toxic metals, which greatly influence the toxicological result in complex, multi-metal contaminated waters.
Additional keywords: algae, bioavailability, chronic toxicity, metal speciation, mining effluents.
Acknowledgements
The authors gratefully acknowledge the financial supports of the Natural Sciences and Engineering Research Council (NSERC) of Canada and the NSERC Metals in the Human Environment – Research Network (MITHE-RN). The authors also wish to thank Dr Emmanuel Yumvihoze (University of Ottawa) for measuring phosphate levels in the samples. Y.G. received a graduate scholarship from Carleton University Emmette Dunne Fund and Ontario Graduate Scholarship in Science and Technology.
[1]
[2]
[3]
B. T. A. Muyssen ,
K. V. Brix ,
D. K. DeForest ,
C. R. Janssen ,
Nickel essentiality and homeostasis in aquatic organisms.
Environ. Rev. 2004
, 12, 113.
| Crossref | GoogleScholarGoogle Scholar |
[4]
M. W. G. de Bolster ,
Glossary of terms used in bioinorganic chemistry (IUPAC recommendations 1997).
Pure Appl. Chem. 1997
, 69, 1251.
| Crossref | GoogleScholarGoogle Scholar |
[5]
D. Templeton ,
F. Ariese ,
R. Cornelis ,
L. G. Danielson ,
H. Muntau ,
H. Van Leeuwen ,
R. Lobinski ,
Guidelines for terms related to chemical speciation and fractionation of elements: definitions, structural aspects and methodological approaches (IUPAC recommendations 2000).
Pure Appl. Chem. 2000
, 72, 1453.
| Crossref | GoogleScholarGoogle Scholar |
[6]
[7]
B. Vigneault ,
P. G. C. Campbell ,
Uptake of cadmium by freshwater green algae: effects of pH and aquatic humic substances.
J. Phycol. 2005
, 41, 55.
| Crossref | GoogleScholarGoogle Scholar |
[8]
[9]
B. Vigneault ,
A. Percot ,
M. Lafleur ,
P. G. C. Campbell ,
Permeability changes in model and phytoplankton membranes in the presence of aquatic humic substances.
Environ. Sci. Technol. 2000
, 34, 3907.
| Crossref | GoogleScholarGoogle Scholar |
[10]
C. Lamelas ,
V. I. Slaveykova ,
Comparison of Cd(II), Cu(II), and Pb(II) biouptake by green algae in the presence of humic acid.
Environ. Sci. Technol. 2007
, 41, 4172.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[11]
R. Sutton ,
G. Sposito ,
Molecular structure in soil humic substances: the new view.
Environ. Sci. Technol. 2005
, 39, 9009.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[12]
E. R. Unsworth ,
K. W. Warnken ,
H. Zhang ,
W. Davison ,
F. Black ,
J. Buffle ,
J. Cao ,
R. Cleven ,
J. Galceran ,
P. Gunkel ,
E. Kalis ,
D. Kistler ,
H. P. van Leeuwen ,
M. Martin ,
S. Noël ,
Y. Nur ,
N. Odzak ,
J. Puy ,
W. V. Riemsdijk ,
L. Sigg ,
E. Temminghoff ,
M.-L. Tercier-Waeber ,
S. Toepperwien ,
R. M. Town ,
L. Weng ,
H. Xue ,
Model predictions of metal speciation in freshwaters compared to measurements by in situ techniques.
Environ. Sci. Technol. 2006
, 40, 1942.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[13]
S. C. Apte ,
G. E. Batley ,
K. C. Bowles ,
P. L. Brown ,
N. Creighton ,
L. T. Hales ,
R. V. Hyne ,
M. Julli ,
S. J. Markich ,
F. Pablo ,
N. J. Rogers ,
J. L. Stauber ,
K. Wilde ,
A comparison of copper speciation measurements with the toxic response of three sensitive freshwater organisms.
Environ. Chem. 2005
, 2, 320.
| Crossref | GoogleScholarGoogle Scholar |
[14]
P. G. C. Campbell ,
O. Errécalde ,
C. Fortin ,
V. P. Hiriart ,
B. Vigneault ,
Metal bioavailability to phytoplankton – applicability of the Biotic Ligand Model.
Comp. Biochem. Phys. C 2002
, 133, 189.
[15]
G. E. Batley ,
S. C. Apte ,
J. L. Stauber ,
Speciation and bioavailability of trace metals in water: progress since 1982.
Aust. J. Chem. 2004
, 57, 903.
| Crossref | GoogleScholarGoogle Scholar |
[16]
[17]
G. K. Pagenkopf ,
Gill surface interaction model for trace metal toxicity to fish: role of complexation, pH, and water hardness.
Environ. Sci. Technol. 1983
, 17, 342.
| Crossref | GoogleScholarGoogle Scholar |
[18]
[19]
Y. Gopalapillai ,
I. I. Fasfous ,
J. D. Murimboh ,
T. Yapici ,
P. Chakraborty ,
C. L. Chakrabarti ,
Determination of free nickel ion concentrations using the ion exchange technique: application to aqueous mining and municipal effluents.
Aquat. Geochem. 2008
, 14, 99.
| Crossref | GoogleScholarGoogle Scholar |
[20]
[21]
F. C. Cantwell ,
J. S. Nielson ,
S. E. Hrudey ,
Free nickel ion concentration in sewage by an ion exchange column–equilibration method.
Anal. Chem. 1982
, 54, 1498.
| Crossref | GoogleScholarGoogle Scholar |
[22]
C. Fortin ,
P. G. C. Campbell ,
An ion-exchange technique for free-metal ion measurements (Cd2+, Zn2+): application to complex aqueous media.
Int. J. Environ. Anal. Chem. 1998
, 72, 173.
| Crossref | GoogleScholarGoogle Scholar |
[23]
[24]
R. Mandal ,
M. S. A. Salam ,
J. Murimboh ,
N. M. Hassan ,
C. L. Chakrabarti ,
M. H. Back ,
D. C. Gregoire ,
W. H. Schroeder ,
Effect of the competition of copper and cobalt on the lability of Ni(II)-organic ligand complexes, Part II: in freshwaters (Rideau River surface waters).
Anal. Chim. Acta 1999
, 395, 323.
| Crossref | GoogleScholarGoogle Scholar |
[25]
Y. Lu ,
C. L. Chakrabarti ,
M. H. Back ,
D. C. Gregoire ,
W. H. Schroeder ,
Kinetic studies of aluminium and zinc speciation in river water and snow.
Anal. Chim. Acta 1994
, 293, 95.
| Crossref | GoogleScholarGoogle Scholar |
[26]
D. L. Olson ,
M. S. Shuman ,
Copper dissociation from estuarine humic materials.
Geochim. Cosmochim. Acta 1985
, 49, 1371.
| Crossref | GoogleScholarGoogle Scholar |
[27]
R. Mandal ,
N. M. Hassan ,
J. Murimboh ,
C. L. Chakrabarti ,
M. H. Back ,
U. Rahayu ,
D. R. S. Lean ,
Chemical speciation and toxicity of nickel species in natural waters from the Sudbury area (Canada).
Environ. Sci. Technol. 2002
, 36, 1477.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[28]
C. L. Chakrabarti ,
Y. Lu ,
J. Cheng ,
D. C. Grégoire ,
M. H. Back ,
W. H. Schroeder ,
Studies on metal speciation in the natural environment.
Anal. Chim. Acta 1993
, 276, 47.
| Crossref | GoogleScholarGoogle Scholar |
[29]
[30]
P. Radix ,
M. Leonard ,
C. Papantoniou ,
G. Roman ,
E. Saouter ,
S. Gallotti-Schmitt ,
H. Thiebaud ,
P. Vasseur ,
Comparison of four chronic toxicity tests using algae, bacteria, and invertebrates assessed with sixteen chemicals.
Ecotoxicol. Environ. Saf. 2000
, 47, 186.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[31]
S. Winch ,
J. Ridal ,
D. Lean ,
Increased metal bioavailability following alteration of freshwater dissolved organic carbon by ultraviolet B radiation exposure.
Environ. Toxicol. 2002
, 17, 267.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[32]
[33]
E. Tipping ,
Humic ion-binding model VI: an improved description of the interactions of protons and metal ions with humic substances.
Aquat. Geochem. 1998
, 4, 3.
| Crossref | GoogleScholarGoogle Scholar |
[34]
R. Mandal ,
M. S. A. Salam ,
J. Murimboh ,
N. M. Hassan ,
C. L. Chakrabarti ,
M. H. Back ,
D. C. Gregoire ,
Competition of Ca(II) and Mg(II) with Ni(II) for binding by a well-characterized fulvic acid in model solutions.
Environ. Sci. Technol. 2000
, 34, 2201.
| Crossref | GoogleScholarGoogle Scholar |
[35]
J. Buffle ,
R. S. Altmann ,
M. Filella ,
A. Tessier ,
Complexation by natural heterogeneous compounds: site occupation distribution functions, a normalized description of metal complexation.
Geochim. Cosmochim. Acta 1990
, 54, 1535.
| Crossref | GoogleScholarGoogle Scholar |
[36]
J. L. Stauber ,
C. M. Davies ,
Use and limitations of microbial bioassays for assessing copper bioavailability in the aquatic environment.
Environ. Rev. 2000
, 8, 255.
| Crossref | GoogleScholarGoogle Scholar |
[37]
K. Hund ,
Algal growth inhibition test – feasibility and limitations for soil assessment.
Chemosphere 1997
, 35, 1069.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[38]
P. Chakraborty ,
Y. Gopalapillai ,
J. Murimboh ,
I. I. Fasfous ,
C. L. Chakrabarti ,
Kinetic speciation of nickel in mining and municipal effluents.
Anal. Bioanal. Chem. 2006
, 386, 1803.
| Crossref | GoogleScholarGoogle Scholar | PubMed |