Colloidal matter in water extracts from forest soils
Alexander Dreves A C , Nils Andersen A , Pieter M. Grootes A , Marie-Josée Nadeau A and Carl-Dieter Garbe-Schönberg BA Leibniz Laboratory for Radiometric Dating and Stable Isotope Research, University of Kiel, Max-Eyth-Straße 11-13, D-24118 Kiel, Germany.
B Institute of Geosciences, University of Kiel, Ludewig-Meyn-Straße 10, D-24118 Kiel, Germany.
C Corresponding author. Email: adreves@leibniz.uni-kiel.de
Environmental Chemistry 4(6) 424-429 https://doi.org/10.1071/EN07057
Submitted: 30 August 2007 Accepted: 5 November 2007 Published: 6 December 2007
Environmental context. Little is known about the proportion of tiny dispersed particles and true solutions in soil water although the distinction has a major influence on transport processes of organic matter, fertiliser and pollutants in soils and thus, e.g., on carbon storage, and its role in global warming. Our study has found a noticeable amount of tiny particles (range 17 nm to 1.0 μm) in filtered soil water, that have a different chemical composition and a lower bioavailability of their organic components in comparison to the soluble part. This significant occurrence and the ecological relevance of colloids for the transport and storage of soil constituents highlights the need to partition soil water content into ‘particulate’ and ‘dissolved’ since the access to soil pores determines particle transport.
Abstract. Water-extracted organic matter (WEOM) is widely used as a surrogate for natural organic matter in soil water in the investigation of soil carbon dynamics. Information about the dissolved or colloidal nature of the organic matter is scarce since dissolved organic matter (DOM) is simply operationally defined by filtration: ‘DOM is what passes through the filter’. Water extracts of two topsoil horizons from both a deciduous (Steinkreuz) and a coniferous (Rotthalmünster) forest, located in Bavaria (Germany), were filtered through a 1-μm quartz filter and analysed regarding the amount of colloids in the range ~17 nm to 1.0 μm, the chemical composition and the radiocarbon concentration of both the colloidal and the dissolved fraction separated by high-speed centrifugation. Up to 13.9 wt-% of the total charge of the water extracts belongs to the colloidal fraction. The colloidal fraction has a higher relative proportion of metals and older organic C than the dissolved fraction. This demonstrates the dual nature of WEOM and the need for a more careful definition of DOM.
Additional keywords: colloids, dissolved organic matter, metals, radiocarbon, water extracts.
Acknowledgements
This study was financially supported by grants of the German Science Foundation within the priority program 1090 ‘Soils as sources and sinks for CO2 – mechanisms and regulation of carbon stabilisation in soils’. We thank the members of the Leibniz laboratory for their help at sample processing and for AMS analysis, and Siegfried Wolfram, Institute of Animal Nutrition and Physiology, University of Kiel, for providing assistance with the high-speed centrifugation. The assistance of Karin Kißling with ICP-OES analyses and of Karen Fiedler with sample pretreatment are gratefully acknowledged. We also thank three anonymous reviewers for their comments which helped us to improve the manuscript.
[1]
W. B. McGill ,
K. R. Cannon ,
J. A. Robertson ,
F. D. Cook ,
Dynamics of soil microbial biomass and water-soluble organic C in Breton L after 50 years of cropping to rotations.
Can. J. Soil Sci. 1986
, 66, 1.
[2]
[3]
J. M. Oades ,
Soil organic matter and structural stability mechanisms and implications for management.
Plant Soil 1984
, 76, 319.
| Crossref | GoogleScholarGoogle Scholar |
[4]
K. Raulund-Rasmussen ,
O. K. Borrggaard ,
H. C. B. Hansen ,
M. Olsson ,
Effect of natural soil solutes on weathering rates of soil minerals.
Eur. J. Soil Sci. 1998
, 49, 397.
| Crossref | GoogleScholarGoogle Scholar |
[5]
A. Gorniak ,
P. Zielinski ,
E. Jekatierynczuk-Rudcyk ,
M. Grabowska ,
T. Suchowolec ,
The role of dissolved organic carbon in a shallow lowland reservoir ecosystem – a long term study.
Acta Hydroch. Hydrob. 2002
, 30, 179.
| Crossref | GoogleScholarGoogle Scholar |
[6]
E. D. Schulze ,
C. Wirth ,
M. Heimann ,
Managing forests after Kyoto.
Science 2000
, 289, 2058.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[7]
A. Zsolnay ,
H. Steindl ,
Geovariability and biodegradability of the water-extractable organic material in an agricultural soil.
Soil Biol. Biochem. 1991
, 23, 1077.
| Crossref | GoogleScholarGoogle Scholar |
[8]
A. Don ,
K. Kalbitz ,
Amounts and degradability of dissolved organic carbon from foliar litter at different decomposition stages.
Soil Biol. Biochem. 2005
, 37, 2171.
| Crossref | GoogleScholarGoogle Scholar |
[9]
F. Hagedorn ,
M. Saurer ,
P. Blaser ,
A 13C tracer study to identify the origin of dissolved organic carbon in forested mineral soils.
Eur. J. Soil Sci. 2004
, 55, 91.
| Crossref | GoogleScholarGoogle Scholar |
[10]
M. Fröberg ,
D. Berggren Kleja ,
F. Hagedorn ,
The contribution of fresh litter to dissolved organic carbon leached from a coniferous forest floor.
Eur. J. Soil Sci. 2007
, 58, 108.
| Crossref | GoogleScholarGoogle Scholar |
[11]
A. Zsolnay ,
Dissolved organic matter: artifacts, definitions, and functions.
Geoderma 2003
, 113, 187.
| Crossref | GoogleScholarGoogle Scholar |
[12]
A. Embacher ,
A. Zsolnay ,
A. Gattinger ,
J. C. Munch ,
The dynamics of water extractable organic matter (WEOM) in common arable topsoils: I. Quantity, quality and function over a three year period.
Geoderma 2007
, 139, 11.
| Crossref | GoogleScholarGoogle Scholar |
[13]
M. H. Chantigny ,
Dissolved and water-extractable organic matter in soils: a review on the influence of land use and management practices.
Geoderma 2003
, 113, 357.
| Crossref | GoogleScholarGoogle Scholar |
[14]
K. Kalbitz ,
B. Glaser ,
R. Bol ,
Clear-cutting of a Norway spruce stand: implications for controls on the dynamics of dissolved organic matter in the forest floor.
Eur. J. Soil Sci. 2004
, 55, 401.
| Crossref | GoogleScholarGoogle Scholar |
[15]
M. Fröberg ,
D. Berggren ,
B. Bergkvist ,
C. Bryant ,
H. Knicker ,
Contributions of Oi, Oe and Oa horizons to dissolved organic matter in forest floor leachates.
Geoderma 2003
, 113, 311.
| Crossref | GoogleScholarGoogle Scholar |
[16]
M. G. Dosskey ,
P. M. Bertsch ,
Transport of dissolved organic matter through a sandy forest soil.
Soil Sci. Soc. Am. J. 1997
, 61, 920.
[17]
R. M. Kretzschmar ,
D. Borkovec ,
D. Grolimund ,
M. Elimelech ,
Mobile subsurface colloids and their role in contaminant transport.
Adv. Agron. 1999
, 66, 121.
[18]
J. R. Lead ,
K. J. Wilkinson ,
Aquatic colloids and nanoparticles: current knowledge and future trends.
Environ. Chem. 2006
, 3, 159.
| Crossref | GoogleScholarGoogle Scholar |
[19]
A. T. Chow ,
F. Guo ,
S. Guo ,
R. Breuer ,
R. A. Dahlgren ,
Filter pore size selection for characterizing dissolved organic carbon and trihalomethane precursors from soils.
Water Res. 2005
, 39, 1255.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[20]
R. M. Rees ,
J. P. Parker ,
Filtration increases the correlation between water extractable organic carbon and soil microbial activity.
Soil Biol. Biochem. 2005
, 37, 2240.
| Crossref | GoogleScholarGoogle Scholar |
[21]
M. Hens ,
R. Merckx ,
The role of colloidal particles in the speciation and analysis of “dissolved” phosphorus.
Water Res. 2002
, 36, 1483.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[22]
B. L. Turner ,
M. A. Kay ,
D. T. Westermann ,
Colloidal phosphorus in surface runoff and water extracts from semiarid soils of the western United States.
J. Environ. Qual. 2004
, 33, 1464.
| PubMed |
[23]
O. S. Pokrovsky ,
J. Schott ,
Iron colloids/organic matter associated transport of major and trace elements in small boreal rivers and their estuaries.
Chem. Geol. 2002
, 190, 141.
| Crossref | GoogleScholarGoogle Scholar |
[24]
O. S. Pokrovsky ,
B. Dupre ,
J. Schott ,
Fe-Al-organic colloids control of trace elements in peat soil solutions: results of ultrafiltration and dialysis.
Aquat. Geochem. 2005
, 11, 241.
| Crossref | GoogleScholarGoogle Scholar |
[25]
O. S. Pokrovsky ,
J. Schott ,
B. Dupre ,
Trace element fractionation and transport in boreal rivers and soil porewaters of permafrost-dominated basaltic terrain in central Siberia.
Geochim. Cosmochim. Acta 2006
, 70, 3239.
| Crossref | GoogleScholarGoogle Scholar |
[26]
A. Thompson ,
O. A. Chadwick ,
S. Boman ,
J. Chorover ,
Colloid mobilization during soil iron redox oscillations.
Environ. Sci. Technol. 2006
, 40, 5743.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[27]
G. N. Fedotov ,
G. V. Dobrovol’skii ,
Colloid-chemical model for describing some soil processes.
Eurasian Soil Sci. 2006
, 39, 477.
| Crossref | GoogleScholarGoogle Scholar |
[28]
G. Aiken ,
J. Leenheer ,
Isolation and chemical characterization of dissolved and colloidal organic matter.
Chem. Ecol. 1993
, 8, 135.
| Crossref | GoogleScholarGoogle Scholar |
[29]
P. A. W. van Hees ,
A.-M. T. van Hees ,
U. S. Lundtsröm ,
Determination of aluminium complexes of low molecular organic acids in soil solution from forest soils using ultrafiltration.
Soil Biol. Biochem. 2001
, 33, 867.
| Crossref | GoogleScholarGoogle Scholar |
[30]
I. Levin ,
B. Kromer ,
The tropospheric 14CO2 level in mid-latitudes of the northern hemisphere (1959–2003).
Radiocarbon 2005
, 46, 1261.
[31]
T. Naegler ,
P. Ciais ,
K. Rodgers ,
I. Levin ,
Excess radiocarbon constraints on air-sea gas exchange and the uptake of CO2 by the oceans.
Geophys. Res. Lett. 2006
, 33, L11802.
| Crossref | GoogleScholarGoogle Scholar |
[32]
S. L. Schiff ,
R. Aravena ,
S. E. Trumbore ,
M. J. Hinton ,
R. Elgood ,
P. J. Dillon ,
Export of DOC from forested catchments on the precambrian shield of central Ontario: clues from 13C and 14C.
Biogeochemistry 1997
, 36, 43.
| Crossref | GoogleScholarGoogle Scholar |
[33]
M. Fröberg ,
D. Berggren ,
B. Bergkvist ,
C. Bryant ,
J. Mulder ,
Concentration and fluxes of dissolved organic carbon (DOC) in three Norway spruce stands along a climatic gradient in Sweden.
Biogeochemistry 2006
, 77, 1.
| Crossref | GoogleScholarGoogle Scholar |
[34]
S. A. Quideau ,
M. A. Anderson ,
R. C. Graham ,
O. A. Chadwick ,
S. E. Trumbore ,
Soil organic matter processes: characterization by 13C NMR and 14C measurements.
For. Ecol. Manage. 2000
, 138, 19.
| Crossref | GoogleScholarGoogle Scholar |
[35]
J. B. Gaudinski ,
S. E. Trumbore ,
E. A. Davidson ,
S. Zheng ,
Soil carbon cycling in a temperate forest: radiocarbon-based estimates of residence times, sequestration rates and portioning of fluxes.
Biogeochemistry 2000
, 51, 33.
| Crossref | GoogleScholarGoogle Scholar |
[36]
[37]
T. Yamashita ,
H. Flessa ,
B. John ,
M. Helfrich ,
B. Ludwig ,
Organic matter in density fractions of water-stable aggregates in silty soils: effect of land use.
Soil Biol. Biochem. 2006
, 38, 3222.
| Crossref | GoogleScholarGoogle Scholar |
[38]
C. Rumpel ,
I. Kögel-Knaber ,
F. Bruhn ,
Vertical distribution, age, and chemical composition of organic carbon in two forest soils of different pedogenesis.
Org. Geochem. 2002
, 33, 1131.
| Crossref | GoogleScholarGoogle Scholar |
[39]
[40]
C.-D. Garbe-Schönberg ,
Simultaneous determination of thirty seven trace elements in twenty eight international rock standards by ICP-MS.
Geostand. Geoanal. Res. 1993
, 17, 81.
| Crossref | GoogleScholarGoogle Scholar |
[41]
M.-J. Nadeau ,
M. Schleicher ,
P. M. Grootes ,
H. Erlenkeuser ,
A. Gottdang ,
D. J. W. Mous ,
J. M. Sarnthein ,
H. Willkomm ,
The Leibniz–Labor AMS facility at the Christian–Albrechts University, Kiel, Germany.
Nucl. Instrum. Meth. B 1997
, 123, 22.
| Crossref | GoogleScholarGoogle Scholar |
[42]
M.-J. Nadeau ,
P. M. Grootes ,
M. Schleicher ,
P. Hasselberg ,
A. Rieck ,
M. Bitterling ,
Sample throughput and data stability at the Leibniz–Labor AMS facility.
Radiocarbon 1998
, 40, 239.
[43]
[44]
D. Hongve ,
P. A. W. van Hees ,
U. S. Lundström ,
Dissolved components in precipitation water percolated through forest litter.
Eur. J. Soil Sci. 2000
, 51, 667.
| Crossref | GoogleScholarGoogle Scholar |
[45]
G. Riise ,
P. van Hees ,
U. Lundström ,
L. T. Strand ,
Mobility of different size fractions of organic carbon, Al, Fe, Mn and Si in podzols.
Geoderma 2000
, 94, 237.
| Crossref | GoogleScholarGoogle Scholar |
[46]
A. Braghetta ,
F. A. DiGiano ,
W. P. Ball ,
Nanofiltration of natural organic matter: pH and ionic strength effects.
J. Environ. Eng. 1997
, 123, 628.
| Crossref | GoogleScholarGoogle Scholar |
[47]
V. García-Molina ,
S. Lyko ,
S. Esplugas ,
T. Wintgens ,
T. Melin ,
Ultrafiltration of aqueous solutions containing organic polymers.
Desalination 2006
, 189, 110.
| Crossref | GoogleScholarGoogle Scholar |
[48]
M. Fröberg ,
P. M. Jardine ,
P. J. Hanson ,
C. W. Swantson ,
D. E. Todd ,
J. R. Tarver ,
C. T. Garten ,
Low dissolved organic carbon input from fresh litter to deep mineral soils.
Soil Sci. Soc. Am. J. 2007
, 71, 347.
| Crossref | GoogleScholarGoogle Scholar |
[49]
R. Tateno ,
T. Hishi ,
H. Takeda ,
Above- and belowground biomass and net primary production in a cool-temperate deciduous forest in relation to topographical changes in soil nitrogen.
For. Ecol. Manage. 2004
, 193, 297.
| Crossref | GoogleScholarGoogle Scholar |
[50]
I. Ostonen ,
K. Löhmus ,
K. Pajuste ,
Fine root biomass, production and its proportion of NPP in a fertile middle-aged Norway spruce forest: Comparison of soil core and ingrowth core methods.
For. Ecol. Manage. 2005
, 212, 264.
| Crossref | GoogleScholarGoogle Scholar |
[51]
D. Schwesig ,
K. Kalbitz ,
E. Matzner ,
Effects of aluminium on the mineralization of dissolved organic carbon derived from forest floors.
Eur. J. Soil Sci. 2003
, 54, 311.
| Crossref | GoogleScholarGoogle Scholar |
[52]
J. M. Boissier ,
D. Fontevielle ,
Biodegradable dissolved organic carbon in seepage waters from two forest soils.
Soil Biol. Biochem. 1993
, 25, 1257.
| Crossref | GoogleScholarGoogle Scholar |
[53]
K. Kalbitz ,
J. Schmerwitz ,
D. Schwesig ,
E. Matzner ,
Biodegradation of soil-derived dissolved organic matter as related to its properties.
Geoderma 2003
, 113, 273.
| Crossref | GoogleScholarGoogle Scholar |
[54]
O. Kiikkilä ,
V. Kitunen ,
A. Smolander ,
Dissolved soil organic matter from surface organic horizons under birch and conifers: Degradation in relation to chemical characteristics.
Soil Biol. Biochem. 2006
, 38, 737.
| Crossref | GoogleScholarGoogle Scholar |
[55]
A. T. Chow ,
K. K. Tanji ,
S. Gao ,
R. A. Dahlgren ,
Temperature, water content and wet-dry cycle effects on DOC production and carbon mineralization in agricultural peat soils.
Soil Biol. Biochem. 2006
, 38, 477.
| Crossref | GoogleScholarGoogle Scholar |
[56]
K. Kalbitz ,
D. Schwesig ,
J. Schmerwitz ,
K. Kaiser ,
L. Haumeier ,
B. Glaser ,
R. Ellerbrock ,
P. Leinweber ,
Changes in properties of soil-derived dissolved organic matter induced by biodegradation.
Soil Biol. Biochem. 2003
, 35, 1129.
| Crossref | GoogleScholarGoogle Scholar |