A short climatology of nanoparticles at the Cape Grim Baseline Air Pollution Station, Tasmania
S. I. Jimi A B E , J.L. Gras C , S. T. Siems B D and P. B. Krummel CA School of Geography and Environmental Science, Monash University, Clayton, Vic. 3800, Australia.
B Climate Theme Monash Sustainability Institute, Monash University, Clayton, Vic. 3800, Australia.
C CSIRO Marine and Atmospheric Research, Private Bag 1, Aspendale, Vic. 3195, Australia.
D School of Mathematical Sciences, Monash University, Clayton, Vic. 3800, Australia.
E Corresponding author. Email: Salah.Jimi@arts.monash.edu.au
Environmental Chemistry 4(5) 301-309 https://doi.org/10.1071/EN07038
Submitted: 7 May 2007 Accepted: 14 September 2007 Published: 2 November 2007
Environmental context. Atmospheric particles play an important role in the global climate system; they contribute to the radiation balance directly, but they also have an indirect effect by modifying cloud properties and influencing precipitation. Over the Southern Ocean, nanometre-sized particle production is believed to be largely natural, although the processes that lead to these particles are not well understood. This work provides new observations of atmospheric nanoparticles, and shows that they arise from diverse sources of production.
Abstract. This paper presents analyses of a two-year record of aerosol measurements made at the Cape Grim Baseline Air Pollution Station (CGBAPS) in Tasmania covering the period 1999 and 2000. The focus of the study is nanoparticles, defined here as particles with diameter Dp, in the range 3 ≤ Dp ≤ 12 nm; with the number concentration determined using two condensation particle counters, a TSI 3025 UCPC (Dp ≥ 3 nm) and a TSI CN3760 (Dp ≥ 12 nm). Total aerosol (Dp ≥ 3 nm) and nanoparticle concentrations were examined for three broad air mass origins, namely ‘Baseline’ or background maritime, continental Australia and Tasmanian air masses. Total median aerosol concentrations in the Baseline, continental and Tasmanian sectors typically ranged from 100 to 900, 1300 to 1900 and 500 to 1200 cm–3, respectively. The median ranges for the nanoparticle concentrations were 50–350 cm–3 in Baseline air, 150–450 cm–3 in continental air and 100–300 cm–3 in Tasmanian air. While the total aerosol concentrations in the three sectors were quite different, the nanoparticle concentrations were less so. Nanoparticle diurnal concentrations showed substantial differences between the three sectors, indicative of different aerosol sources or precursor sources in the regions designated by these wind sectors.
Additional keywords: aerosol nucleation, marine aerosols, Southern Ocean, wind sectors.
Acknowledgements
Cape Grim is funded and managed by the Australian Bureau of Meteorology, with the scientific program being jointly supervised with CSIRO. Cape Grim forms part of the Australian contribution to the WMO Global Atmosphere Watch (GAW) program.
The authors acknowledge the contribution of the staff at the Cape Grim Baseline to the operation of the aerosol sampling equipment at the Air Pollution Station. The authors are also grateful to the Commonwealth Bureau of Meteorology for providing MSLP charts.
[1]
[2]
[3]
C. D. O’Dowd ,
T. Hoffmann ,
Coastal new particle formation: A review of the current state-of-the Arts.
Environ. Chem. 2005
, 2, 245.
| Crossref | GoogleScholarGoogle Scholar |
[4]
C. D. O’Dowd ,
M. Geever ,
M. K. Hill ,
M. H. Smith ,
S. G. Jennings ,
New particle formation: Nucleation rates and spatial scales in the clean marine coastal environment.
Geophys. Res. Lett. 1998
, 25, 1661.
| Crossref | GoogleScholarGoogle Scholar |
[5]
C. D. O’Dowd ,
E. Becker ,
M. Kulmala ,
Mid-latitude North-Atlantic aerosol characteristics in clean and polluted air.
Atmos. Res. 2001
, 58, 167.
| Crossref | GoogleScholarGoogle Scholar |
[6]
C. D. O’Dowd ,
J. L. Jimenez ,
R. Bahreini ,
R. C. Flagan ,
J. H. Seinfeld ,
K. Hameri ,
L. Pirjola ,
M. Kulmala ,
S. G. Jennings ,
T. Hoffmann ,
Marine aerosol formation from biogenic iodine emissions.
Nature 2002
, 417, 632.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[7]
C. D. O’Dowd ,
K. Hameri ,
J. M. Makela ,
L. Pirjola ,
M. Kulmala ,
S. G. Jennings ,
H. Berresheim ,
H. C. Hansson ,
G. de Leeuw ,
G. J. Kunz ,
A. G. Allen ,
C. N. Hewitt ,
A. Jackson ,
Y. Viisanen ,
T. Hoffmann ,
A dedicated study of new Particle Formation and Fate in the Coastal Environment (PARFORCE): overview of objectives and achievements.
J. Geophys. Res. 2002
, 107, 8108.
| Crossref | GoogleScholarGoogle Scholar |
[8]
G. De Leeuw ,
G. Kunz ,
G. Buzorius ,
C. D. O’Dowd ,
Meteorological influences on coastal new particle formation.
J. Geophys. Res. 2002
, 107, 8102.
| Crossref | GoogleScholarGoogle Scholar |
[9]
T. S. Bates ,
V. N. Kapustin ,
P. K. Quinn ,
D. S. Covert ,
D. J. Coffman ,
C. Mari ,
P. A. Durkee ,
W. J. De Bruyn ,
E. S. Saltzman ,
Processes controlling the distribution of aerosol particles in the lower marine boundary layer during the First Aerosol Characterisation Experiment (ACE 1).
J. Geophys. Res. 1998
, 103, 16369.
| Crossref | GoogleScholarGoogle Scholar |
[10]
D. S. Covert ,
V. N. Kapustin ,
P. K. Quinn ,
T. S. Bates ,
New particle formation in the marine boundary layer.
J. Geophys. Res. 1992
, 97, 20581.
[11]
B. L. Dunse ,
L. P. Steele ,
S. R. Wilson ,
P. J. Fraser ,
P. B. Krummel ,
Trace gas emissions from Melbourne, Australia, based on AGAGE observations at Cape Grim, Tasmania, 1995–2000.
Atmos. Environ. 2005
, 39, 6334.
| Crossref | GoogleScholarGoogle Scholar |
[12]
M. L. Cox ,
G. A. Sturrock ,
P. J. Fraser ,
S. T. Siems ,
P. B. Krummel ,
S. O’Doherty ,
Regional sources of methyl chloride, chloroform and dichloromethane identified from AGAGE observations at Cape Grim, Tasmania.
J. Atmos. Chem. 2003
, 45, 79.
| Crossref | GoogleScholarGoogle Scholar |
[13]
A. Wiedensohlet ,
D. Orsini ,
D. S. Covert ,
D. Coffmann ,
W. Cantrell ,
M. Havlicek ,
F. J. Brechtel ,
L. M. Russell ,
R. J. Weber ,
J. Gras ,
J. G. Hudson ,
M. Litchy ,
Intercomparison study of size-dependent counting efficiency of 26 condensation particle counters.
Aerosol Sci. Technol. 1997
, 27, 224.
| Crossref | GoogleScholarGoogle Scholar |
[14]
J. L. Gras ,
Baseline atmospheric condensation nuclei at Cape Grim 1977–1987.
J. Atmos. Chem. 1990
, 11, 89.
| Crossref | GoogleScholarGoogle Scholar |
[15]
M. J. Reeder ,
R. K. Smith ,
Australian spring and summer cold fronts.
Aust. Meteorol. Mag. 1992
, 41, 101.
[16]
[17]
G. P. Ayers ,
J. P. Ivey ,
R. W. Gillett ,
Coherence between seasonal cycles of dimethylsulfide, methanesulfonate, and sulfate in marine air.
Nature 1991
, 349, 404.
| Crossref | GoogleScholarGoogle Scholar |
[18]
G. P. Ayers ,
S. T. Bentley ,
J. P. Ivey ,
B. W. Forgan ,
Dimethylsulfide in marine air at Cape Grim, 41°S.
J. Geophys. Res. 1995
, 100, 21013.
| Crossref | GoogleScholarGoogle Scholar |
[19]
[20]
M. L. Cox ,
G. A. Sturrock ,
P. J. Fraser ,
S. T. Siems ,
P. B. Krummel ,
Identification of regional sources of methyl bromide and methyl iodide from AGAGE observations at Cape Grim, Tasmania.
J. Atmos. Chem. 2005
, 50, 59.
| Crossref | GoogleScholarGoogle Scholar |
[21]
K. J. Tory ,
M. E. Cope ,
G. D. Hess ,
S. H. Lee ,
N. Wong ,
The use of long-range transport simulations to verify the Australian Air Quality Forecasting System.
Aust. Meteorol. Mag. 2003
, 52, 229.
[22]
S. C. McGibbony ,
S. T. Siems ,
W. L. Physick ,
P. J. Hurley ,
The sensitivity of simulations of air pollution events at Cape Grim to the modelled meteorology.
Aust. Meteorol. Mag. 2005
, 54, 321.
[23]
M. R. Grose ,
J. M. Cainey ,
A. McMinn ,
J. A. E. Gibson ,
Coastal marine methyl iodide source and links to new particle formation at Cape Grim during February 2006.
Environ. Chem. 2007
, 4, 172.
| Crossref | GoogleScholarGoogle Scholar |
[24]
J. L. Gras ,
M. D. Keywood ,
G. P. Ayers ,
Factors controlling winter-time aerosol light scattering in Launceston, Tasmania.
Atmos. Environ. 2001
, 35, 1881.
| Crossref | GoogleScholarGoogle Scholar |
[25]
[26]
[27]
F. M. McGovern ,
An analysis of condensation nuclei levels at Mace Head, Ireland.
Atmos. Environ. 1999
, 33, 1711.
| Crossref | GoogleScholarGoogle Scholar |
[28]
J. W. Fitzgerald ,
Marine aerosols: A review.
Atmos. Environ. 1991
, 25A, 533.
[29]
E. L. Andreas ,
J. B. Edson ,
E. C. Monahan ,
M. P. Rouault ,
S. D. Smith ,
The spray contribution to net evaporation from the sea: a review of recent progress.
Bound.-lay. Meteorol. 1995
, 72, 3.
| Crossref | GoogleScholarGoogle Scholar |
[30]
E. K. Bigg ,
J. L. Gras ,
C. Evans ,
Origin of Aitken particles in remote regions of the southern hemisphere.
J. Atmos. Chem. 1984
, 1, 203.
| Crossref | GoogleScholarGoogle Scholar |
[31]
A. W. Hogan ,
S. Barnard ,
Seasonal and frontal variation in Antarctic aerosol concentrations.
J. Appl. Meteorol. 1978
, 17, 1458.
| Crossref | GoogleScholarGoogle Scholar |
[32]
G. P. Ayers ,
R. W. Gillett ,
DMS and its oxidation products in the remote marine atmosphere: implications for climate and atmospheric chemistry.
J. Sea Res. 2000
, 43, 275.
| Crossref | GoogleScholarGoogle Scholar |