Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

A short climatology of nanoparticles at the Cape Grim Baseline Air Pollution Station, Tasmania

S. I. Jimi A B E , J.L. Gras C , S. T. Siems B D and P. B. Krummel C
+ Author Affiliations
- Author Affiliations

A School of Geography and Environmental Science, Monash University, Clayton, Vic. 3800, Australia.

B Climate Theme Monash Sustainability Institute, Monash University, Clayton, Vic. 3800, Australia.

C CSIRO Marine and Atmospheric Research, Private Bag 1, Aspendale, Vic. 3195, Australia.

D School of Mathematical Sciences, Monash University, Clayton, Vic. 3800, Australia.

E Corresponding author. Email: Salah.Jimi@arts.monash.edu.au

Environmental Chemistry 4(5) 301-309 https://doi.org/10.1071/EN07038
Submitted: 7 May 2007  Accepted: 14 September 2007   Published: 2 November 2007

Environmental context. Atmospheric particles play an important role in the global climate system; they contribute to the radiation balance directly, but they also have an indirect effect by modifying cloud properties and influencing precipitation. Over the Southern Ocean, nanometre-sized particle production is believed to be largely natural, although the processes that lead to these particles are not well understood. This work provides new observations of atmospheric nanoparticles, and shows that they arise from diverse sources of production.

Abstract. This paper presents analyses of a two-year record of aerosol measurements made at the Cape Grim Baseline Air Pollution Station (CGBAPS) in Tasmania covering the period 1999 and 2000. The focus of the study is nanoparticles, defined here as particles with diameter Dp, in the range 3 ≤ Dp ≤ 12 nm; with the number concentration determined using two condensation particle counters, a TSI 3025 UCPC (Dp ≥ 3 nm) and a TSI CN3760 (Dp ≥ 12 nm). Total aerosol (Dp ≥ 3 nm) and nanoparticle concentrations were examined for three broad air mass origins, namely ‘Baseline’ or background maritime, continental Australia and Tasmanian air masses. Total median aerosol concentrations in the Baseline, continental and Tasmanian sectors typically ranged from 100 to 900, 1300 to 1900 and 500 to 1200 cm–3, respectively. The median ranges for the nanoparticle concentrations were 50–350 cm–3 in Baseline air, 150–450 cm–3 in continental air and 100–300 cm–3 in Tasmanian air. While the total aerosol concentrations in the three sectors were quite different, the nanoparticle concentrations were less so. Nanoparticle diurnal concentrations showed substantial differences between the three sectors, indicative of different aerosol sources or precursor sources in the regions designated by these wind sectors.

Additional keywords: aerosol nucleation, marine aerosols, Southern Ocean, wind sectors.


Acknowledgements

Cape Grim is funded and managed by the Australian Bureau of Meteorology, with the scientific program being jointly supervised with CSIRO. Cape Grim forms part of the Australian contribution to the WMO Global Atmosphere Watch (GAW) program.


The authors acknowledge the contribution of the staff at the Cape Grim Baseline to the operation of the aerosol sampling equipment at the Air Pollution Station. The authors are also grateful to the Commonwealth Bureau of Meteorology for providing MSLP charts.


References


[1]   Houghton J. T., Jenkins G. J., Ephraums J. J. (Eds), Intergovernmental Panel on Climate Change (IPCC), in Climate Change 1990 1990 (Cambridge University Press: New York).

[2]   Houghton J. T., Ding Y., Griggs D. J., Noguer M., der Linden P. J., Dai X., Maskell K., Johnson C. A. (Eds), Intergovernmental Panel on Climate Change (IPCC), in Climate Change 2001 2001 (Cambridge University Press: New York).

[3]   C. D. O’Dowd , T. Hoffmann , Coastal new particle formation: A review of the current state-of-the Arts. Environ. Chem. 2005 , 2,  245.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[4]   C. D. O’Dowd , M. Geever , M. K. Hill , M. H. Smith , S. G. Jennings , New particle formation: Nucleation rates and spatial scales in the clean marine coastal environment. Geophys. Res. Lett. 1998 , 25,  1661.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[5]   C. D. O’Dowd , E. Becker , M. Kulmala , Mid-latitude North-Atlantic aerosol characteristics in clean and polluted air. Atmos. Res. 2001 , 58,  167.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[6]   C. D. O’Dowd , J. L. Jimenez , R. Bahreini , R. C. Flagan , J. H. Seinfeld , K. Hameri , L. Pirjola , M. Kulmala , S. G. Jennings , T. Hoffmann , Marine aerosol formation from biogenic iodine emissions. Nature 2002 , 417,  632.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[7]   C. D. O’Dowd , K. Hameri , J. M. Makela , L. Pirjola , M. Kulmala , S. G. Jennings , H. Berresheim , H. C. Hansson , G. de Leeuw , G. J. Kunz , A. G. Allen , C. N. Hewitt , A. Jackson , Y. Viisanen , T. Hoffmann , A dedicated study of new Particle Formation and Fate in the Coastal Environment (PARFORCE): overview of objectives and achievements. J. Geophys. Res. 2002 , 107,  8108.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[8]   G. De Leeuw , G. Kunz , G. Buzorius , C. D. O’Dowd , Meteorological influences on coastal new particle formation. J. Geophys. Res. 2002 , 107,  8102.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[9]   T. S. Bates , V. N. Kapustin , P. K. Quinn , D. S. Covert , D. J. Coffman , C. Mari , P. A. Durkee , W. J. De Bruyn , E. S. Saltzman , Processes controlling the distribution of aerosol particles in the lower marine boundary layer during the First Aerosol Characterisation Experiment (ACE 1). J. Geophys. Res. 1998 , 103,  16369.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[10]   D. S. Covert , V. N. Kapustin , P. K. Quinn , T. S. Bates , New particle formation in the marine boundary layer. J. Geophys. Res. 1992 , 97,  20581.
         open url image1

[11]   B. L. Dunse , L. P. Steele , S. R. Wilson , P. J. Fraser , P. B. Krummel , Trace gas emissions from Melbourne, Australia, based on AGAGE observations at Cape Grim, Tasmania, 1995–2000. Atmos. Environ. 2005 , 39,  6334.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[12]   M. L. Cox , G. A. Sturrock , P. J. Fraser , S. T. Siems , P. B. Krummel , S. O’Doherty , Regional sources of methyl chloride, chloroform and dichloromethane identified from AGAGE observations at Cape Grim, Tasmania. J. Atmos. Chem. 2003 , 45,  79.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[13]   A. Wiedensohlet , D. Orsini , D. S. Covert , D. Coffmann , W. Cantrell , M. Havlicek , F. J. Brechtel , L. M. Russell , R. J. Weber , J. Gras , J. G. Hudson , M. Litchy , Intercomparison study of size-dependent counting efficiency of 26 condensation particle counters. Aerosol Sci. Technol. 1997 , 27,  224.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[14]   J. L. Gras , Baseline atmospheric condensation nuclei at Cape Grim 1977–1987. J. Atmos. Chem. 1990 , 11,  89.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[15]   M. J. Reeder , R. K. Smith , Australian spring and summer cold fronts. Aust. Meteorol. Mag. 1992 , 41,  101.
         open url image1

[16]   Jimi S. I., Nanoparticles in the marine boundary layer: a regional perspective using in situ observations at Cape Grim, Tasmania, Australia 2004, Ph.D. thesis, Monash University, Melbourne, Australia.

[17]   G. P. Ayers , J. P. Ivey , R. W. Gillett , Coherence between seasonal cycles of dimethylsulfide, methanesulfonate, and sulfate in marine air. Nature 1991 , 349,  404.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[18]   G. P. Ayers , S. T. Bentley , J. P. Ivey , B. W. Forgan , Dimethylsulfide in marine air at Cape Grim, 41°S. J. Geophys. Res. 1995 , 100,  21013.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[19]   Cainey J. M., Ayers G. P., Gillett R. W., Gras J. L., Ivey J. P., Selleck P. W., Sulfur aerosol/CCN relationship in marine air at Cape Grim, in Baseline (Eds R. J. Francey, A. L. Dick, N. Derek) 1996, 93, 58 (Bureau of Meteorology and CSIRO Division of Atmospheric Research, Melbourne, Australia).

[20]   M. L. Cox , G. A. Sturrock , P. J. Fraser , S. T. Siems , P. B. Krummel , Identification of regional sources of methyl bromide and methyl iodide from AGAGE observations at Cape Grim, Tasmania. J. Atmos. Chem. 2005 , 50,  59.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[21]   K. J. Tory , M. E. Cope , G. D. Hess , S. H. Lee , N. Wong , The use of long-range transport simulations to verify the Australian Air Quality Forecasting System. Aust. Meteorol. Mag. 2003 , 52,  229.
         open url image1

[22]   S. C. McGibbony , S. T. Siems , W. L. Physick , P. J. Hurley , The sensitivity of simulations of air pollution events at Cape Grim to the modelled meteorology. Aust. Meteorol. Mag. 2005 , 54,  321.
         open url image1

[23]   M. R. Grose , J. M. Cainey , A. McMinn , J. A. E. Gibson , Coastal marine methyl iodide source and links to new particle formation at Cape Grim during February 2006. Environ. Chem. 2007 , 4,  172.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[24]   J. L. Gras , M. D. Keywood , G. P. Ayers , Factors controlling winter-time aerosol light scattering in Launceston, Tasmania. Atmos. Environ. 2001 , 35,  1881.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[25]   Gras J. L., Aerosols: climatology of tropospheric aerosols, in Encyclopedia of Atmospheric Sciences (Eds J. R. Holton, J. A. Pyle, J. A. Curry) 2003, 13 (Academic Press: London).

[26]   Gras J. L., Particles, in Baseline Atmospheric Program Australia 1999–2000 (Eds N. W. Tindale, N. Derek, P. J. Fraser) 2003, 98 (Bureau of Meteorology and CSIRO Division of Atmospheric Research, Melbourne, Australia).

[27]   F. M. McGovern , An analysis of condensation nuclei levels at Mace Head, Ireland. Atmos. Environ. 1999 , 33,  1711.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[28]   J. W. Fitzgerald , Marine aerosols: A review. Atmos. Environ. 1991 , 25A,  533.
         open url image1

[29]   E. L. Andreas , J. B. Edson , E. C. Monahan , M. P. Rouault , S. D. Smith , The spray contribution to net evaporation from the sea: a review of recent progress. Bound.-lay. Meteorol. 1995 , 72,  3.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[30]   E. K. Bigg , J. L. Gras , C. Evans , Origin of Aitken particles in remote regions of the southern hemisphere. J. Atmos. Chem. 1984 , 1,  203.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[31]   A. W. Hogan , S. Barnard , Seasonal and frontal variation in Antarctic aerosol concentrations. J. Appl. Meteorol. 1978 , 17,  1458.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[32]   G. P. Ayers , R. W. Gillett , DMS and its oxidation products in the remote marine atmosphere: implications for climate and atmospheric chemistry. J. Sea Res. 2000 , 43,  275.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1