Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Airborne Measurements of Trace Organic Species in the Upper Troposphere Over Europe: the Impact of Deep Convection

Aurélie Colomb A , Jonathan Williams A E , John Crowley A , Valérie Gros A B , Rolf Hofmann A , Gavin Salisbury A , Thomas Klüpfel A , R. Kormann A , Alexander Stickler A , Caroline Forster C D and Jos Lelieveld A
+ Author Affiliations
- Author Affiliations

A Max Planck Institute for Chemistry, Air Chemistry Department, Mainz, Germany.

B Current address: Laboratoire des Sciences du Climat et de l’Environnement-Unité mixte CEA-CNRS, Yvette, France.

C Technical University Munich, Department of Ecology, Freising Weihenstephan, Germany.

D Current address: Norwegian Institute for Air Research (NILU), Kjeller, Norway.

E Corresponding author. Email: williams@mpch-mainz.mpg.de

Environmental Chemistry 3(4) 244-259 https://doi.org/10.1071/EN06020
Submitted: 16 March 2006  Accepted: 7 July 2006   Published: 5 September 2006

Environmental Context. In the upper troposphere, sources of HOx such as acetone, peroxides, and aldehydes can play an important role in governing the production and destruction of ozone. Convection (over both land and sea) carries gases that can contribute to increased levels of HOx to the upper troposphere. The chemical impact of convection on the continental upper troposphere over Europe is studied by sampling the upper troposphere. Mass spectrometry techniques are used to analyze the collected samples. Such a study should aid in understanding the impact meteorological events have on atmospheric chemistry.

Abstract. The volume mixing ratios of several organic trace gases and ozone (O3) were measured in the upper troposphere over Europe during the UTOPIHAN-ACT aircraft campaign in July 2003. The organic trace gases included alkanes, isoprene, aromatics, iodomethane, and trichloroethylene, oxygenates such as acetone, methanol, formaldehyde, carbon monoxide, and longer-lived tracer species such as chlorofluorocarbons and halochloroflurocarbons. The aim of the UTOPIHAN-ACT project was to study the chemical impact of deep convection on the continental upper troposphere. A Lear Jet aircraft, based in Germany, was flown at heights between 6 and 13 km in the region 59°N–42°N to 7°W–13°E during July 2003. Overall, the convectively influenced measurements presented here show a weaker variability lifetime dependence of trace gases than similar measurements collected over the Mediterranean region under more stable high-pressure conditions. Several cases of convective outflow are identified by the elevated mixing ratios of organic species relative to quiescent background conditions, with both biogenic and anthropogenic influences detectable in the upper troposphere. Enhancement at higher altitudes, notably of species with relatively short chemical lifetimes such as benzene, toluene, and even isoprene indicates deep convection over short timescales during summertime. The impact of deep convection on the local upper tropospheric formaldehyde and HOx budgets is assessed.

Keywords. : atmospheric chemistry — convection — gases — upper troposphere — volatile organic compounds


Acknowledgements

We gratefully acknowledge the Deutsches Zentrum für Luft- und Raumfahrt (DLR) in Oberpfaffenhoffen, the GFD (Gesellschaft fuer Flugzieldarstellung) in Hohn, Dr Elliot Atlas (NCAR/University of Miami) for standard comparisons, Dr Frank Helleis and Michael Flanz for electronic support and Enviscope GmbH for their excellent work. Dr Heidi Huntrieser (DLR) is also thanked for making satellite images available. This work was supported by the European Union within the framework of UTOPIHAN-ACT project (EVK2-CT-2001-00099).


References


[1]   A. A. Lacis, D. J. Wuebbles, J. A. Logan, J. Geophys. Res. 1990, 95,  9971.
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
          in press.
         
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
         
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  open url image1