Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Investigating the Mechanism of Uranium Removal by Zerovalent Iron

Chicgoua Noubactep A D , Günther Meinrath B C and Broder J. Merkel C
+ Author Affiliations
- Author Affiliations

A Centre of Geosciences – Applied Geology, 37077 Göttingen, Germany.

B RER Consultants, Schießstattweg 3a, 94032 Passau, Germany.

C Institute of Geology, Technical University Mining Academy Freiberg, 09596 Freiberg, Germany.

D Corresponding author. Email: cnoubac@gwdg.de

Environmental Chemistry 2(3) 235-242 https://doi.org/10.1071/EN05003
Submitted: 24 November 2004  Accepted: 12 July 2005   Published: 27 September 2005

Environmental Context. Groundwater is the water that fills the spaces between sand, soil, and rock below the water table. It discharges into ecologically sensitive wetlands and is used as drinking water or in agriculture and industry. Inappropriate waste disposal and poor land management can contaminate groundwater and may minimize its use for decades. The common method for pumping contaminated groundwater to the surface for treatment is costly and labour intensive. Zerovalent iron is a new, more cost-effective method of groundwater remediation.

Abstract.  Zerovalent iron (ZVI) has been proposed as a reactive material in permeable in situ walls for groundwater contaminated by metal pollutants. For such pollutants that interact with corrosion products, the determination of the actual mechanism of their removal is very important to predict their stability in the long term. From a study of the effects of pyrite (FeS2) and manganese nodules (MnO2) on the uranium removal potential of a selected ZVI material, a test methodology (FeS2–MnO2 method) is suggested to follow the pathway of contaminant removal by ZVI materials. An interpretation of the removal potential of ZVI for uranium in the presence of both additives corroborates coprecipitation with iron corrosion products as the initial removal mechanism for uranium.

Keywords. : iron — redox reactions — uranium — water treatment


Acknowledgments

The authors express their gratitude to the branch of the MAZ (Metallaufbereitung Zwickau, Co.) in Freiberg (Germany) who kindly purchased the used scrap iron. The work was granted by the Deutsche Forschungsgemeinschaft (DFG-GK 272).


References


[1]   EPA/RTDF, Permeable Reactive Barrier Technologies for Contaminant Remediation. EPA/600/R-98/125 September 1998.

[2]   D. C. McMurty, R. O. Elton, Environ. Progr. 1985, 4,  168.
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
         open url image1