Register      Login
Exploration Geophysics Exploration Geophysics Society
Journal of the Australian Society of Exploration Geophysicists
RESEARCH ARTICLE

Alternative local wavenumber methods to estimate magnetic source parameters

Guoqing Ma 1 Lili Li 1 2
+ Author Affiliations
- Author Affiliations

1 College of Geoexploration Science and Technology, Jilin University, Changchun, 130021, China.

2 Corresponding author. Email: lilili815208@sina.com

Exploration Geophysics 44(4) 264-271 https://doi.org/10.1071/EG13010
Submitted: 28 January 2013  Accepted: 12 September 2013   Published: 23 October 2013

Abstract

Three alternative local wavenumber methods are proposed to estimate the depth and the nature (structural index) of the 2D magnetic source simultaneously using various combinations of different forms of the local wavenumbers to compute the source parameters without any prior information about the source. A clustering method is also provided to get more accurate results. The proposed local wavenumber methods are demonstrated on synthetic noise-free and noise-corrupted magnetic data, and they successfully estimate the location parameters and structural index of the causative sources. The actual application of the proposed methods is demonstrated on a magnetic anomaly from southern Illinois.

Key words: depth, magnetic, structural index.


References

Blakely, R. J., 1995, Potential theory in gravity and magnetic applications: Cambridge University Press.

Bracewell, R. N., 1965, The Fourier transform and its application: McGraw Hill Book Co.

Huang, D., Gubbins, D., Clark, R. A., and Whaler, K. A., 1995, Combined study of Euler’s homogeneity equation for gravity and magnetic field: 57th EAGE conference, Glasgow, UK, Extended Abstracts, 144.

Keating, P., 2009, Improved use of the local wavenumber in potential-field interpretation: Geophysics, 74, L75–L85
Improved use of the local wavenumber in potential-field interpretation:Crossref | GoogleScholarGoogle Scholar |

Kirkham, K., 2001, Investigations of a high-resolution aeromagnetic survey over the southeastern portion of the Illinois Basin: M.Sc. thesis, Southern Illinois University of Carbondale.

Ma, G. Q., 2013, Improved local wavenumber methods in the interpretation of potential field data: Pure and Applied Geophysics, 170, 633–643
Improved local wavenumber methods in the interpretation of potential field data:Crossref | GoogleScholarGoogle Scholar |

Ma, G., Du, X., and Li, L., 2012, Interpretation of potential field tensor data using the tensor local wavenumber method and the comparison with the conventional local wavenumber method: Chinese Journal of Geophysics, 55, 380–393
Interpretation of potential field tensor data using the tensor local wavenumber method and the comparison with the conventional local wavenumber method:Crossref | GoogleScholarGoogle Scholar |

Nabighian, N., Grauch, V. J. S., Hansen, R. O., LaFehr, T. R., Li, Y., Peirce, J. W., Phillips, J. D., and Ruder, M. E., 2005, The historical development of the magnetic method in exploration: Geophysics, 70, 33–61

Pilkington, M, and Keating, P., 2006, The relationship between local wavenumber and analytic signal in magnetic interpretation: Geophysics, 71, L1–L3
The relationship between local wavenumber and analytic signal in magnetic interpretation:Crossref | GoogleScholarGoogle Scholar |

Reid, A. B., Allsop, J. M., Granser, H., Millet, A. J., and Somerton, I. W., 1990, Magnetic interpretation in three dimensions using Euler deconvolution.: Geophysics, 55, 80–91
Magnetic interpretation in three dimensions using Euler deconvolution.:Crossref | GoogleScholarGoogle Scholar |

Salem, A., 2005, Interpretation of magnetic data using analytic signal derivatives: Geophysical Prospecting, 53, 75–82
Interpretation of magnetic data using analytic signal derivatives:Crossref | GoogleScholarGoogle Scholar |

Salem, A., and Smith, R. S., 2005, Depth and structural index from the normalized local wavenumber of 2D magnetic anomalies: Geophysical Prospecting, 53, 83–89
Depth and structural index from the normalized local wavenumber of 2D magnetic anomalies:Crossref | GoogleScholarGoogle Scholar |

Salem, A., Ravat, D., Smith, R., and Ushijima, K., 2005, Interpretation of magnetic data using an enhanced local wavenumber (ELW) method: Geophysics, 70, L7–L12
Interpretation of magnetic data using an enhanced local wavenumber (ELW) method:Crossref | GoogleScholarGoogle Scholar |

Salem, A., Williams, S., Fairhead, D., Smith, R., and Ravat, D., 2008, Interpretation of magnetic data using tilt-angle derivatives: Geophysics, 73, L1–L10
Interpretation of magnetic data using tilt-angle derivatives:Crossref | GoogleScholarGoogle Scholar |

Smith, R. S., and Salem, A., 2005, Imaging depth, structural and susceptibility from magnetic data: the advanced source-parameter imaging method: Geophysics, 70, 141–151

Smith, R. S., Thurston, J. B., Dai, T., and Macleod, I. N., 1998, iSPI — the improved source parameter imaging method: Geophysical Prospecting, 46, 141–151
iSPI — the improved source parameter imaging method:Crossref | GoogleScholarGoogle Scholar |

Thompson, D. T., 1982, EULDPH: a new technique for making computer-assisted depth estimates from magnetic data: Geophysics, 47, 31–37
EULDPH: a new technique for making computer-assisted depth estimates from magnetic data:Crossref | GoogleScholarGoogle Scholar |

Thurston, J. B., and Smith, R. S., 1997, Automatic conversion of magnetic data to depth, dip, and susceptibility contrast using the SPI method: Geophysics, 62, 807–813
Automatic conversion of magnetic data to depth, dip, and susceptibility contrast using the SPI method:Crossref | GoogleScholarGoogle Scholar |

Thurston, J. B., Smith, R. S., and Guillon, J., 2002, A multi-model method for depth estimation from magnetic data: Geophysics, 67, 555–561
A multi-model method for depth estimation from magnetic data:Crossref | GoogleScholarGoogle Scholar |