Spatio-temporal variability of sugarcane (Saccharum officinarum) yield in relation to edaphoclimatic factors in the central region of Brazil
Frank Freire Capuchinho


A
B
C
D
E
F
Abstract
Production of sugarcane (Saccharum officinarum) in Brazil holds a significant global position. However, it faces challenges in yield optimization due to unfavorable edaphoclimatic conditions and technological limitations.
This study aimed to correlate the spatio-temporal variability of sugarcane yield with edaphoclimatic conditions in the central region of Brazil.
This study included 11 sugarcane producing municipalities in central region of Brazil. It utilized 47 years of historical data on yield, climate, and soil. To isolate the climatic effects on yield (Yr), technological trends (YrNT) were removed via simple linear regression adjustment, followed by cluster analysis.
Four groups of Yr and YrNT were identified. Group 1 exhibited the highest average yield (77 Mg ha−1), while Group 4 had the lowest (47 Mg ha−1), with a yield gap of approximately 10.2 Mg ha−1. Municipalities with the highest Yr averages were in Clusters 3 and 4 for climate, and Clusters 2 and 3 for soil.
The higher occurrence of anomalies lower than 1.0 σ for climate Group 3 of YrNT indicates that unfavorable climatic conditions combined with inadequate production technologies can lead to significant yield losses (26% of years). Evaluating sugarcane yield by considering crop cycles and edaphoclimatic factors before technological trends can provide a more accurate insight into yield variability.
Understanding the relationship between edaphoclimatic factors and sugarcane yield variation can guide targeted interventions, aiding in the development of strategies to mitigate losses in sugarcane farming.
Keywords: agrometeorology, cluster analysis, long-term data, real yield, Saccharum spp, soil chemistry, soil physics, technological trend, temporal and spatial variability.
References
Alface AB, Pereira SB, Filgueiras R, Cunha FF (2019) Sugarcane spatial-temporal monitoring and crop coefficient estimation through NDVI. Revista Brasileira de Engenharia Agrícola e Ambiental 23(5), 330-335.
| Crossref | Google Scholar |
Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLdM, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22(6), 711-728.
| Crossref | Google Scholar |
Alves JEC, Clemente CV, Rodrigues PHV (2015) Polímero hidroretentor no desenvolvimento inicial da cultura da cana-de-açúcar. Bioenergia Em Revista: Diálogos 5(1), 66-72.
| Google Scholar |
Araldi R, Silva FML, Ono EO, Rodrigues JD (2010) Florescimento em cana-de-açúcar. Ciência Rural 40(3), 694-702.
| Crossref | Google Scholar |
Araújo RM, Oliveira RAd, Cuandra SV, Almeida IR, Weber H (2017) Condições agrometeorológicas para perfilhamento máximo da cultura de cana-de-açúcar em dois ambientes distintos de produção. Agrometeoros 25(1), 257-264.
| Google Scholar |
Arsego DA, Ferraz SET, Streck NA, Cardoso AdO, Zanon Júnior A (2019) Indicadores climáticos e a produtividade de soja no Rio Grande do Sul. Revista Brasileira de Meteorologia 34(2), 191-200.
| Crossref | Google Scholar |
Aslam M (2016) Agricultural productivity current scenario, constraints and future prospects in Pakistan. Sarhad Journal of Agriculture 32(4), 289-303.
| Crossref | Google Scholar |
Ataíde GdM, Castro RVO, Correia ACC, Reis GGd, Reis MdGF, Rosado AM (2015) Interação árvores e ventos: aspectos ecofisiológicos e silviculturais. Ciência Florestal 25(2), 523-535.
| Crossref | Google Scholar |
Awe GO, Reichert JM, Fontanela E (2020) Sugarcane production in the subtropics: seasonal changes in soil properties and crop yield in no-tillage, inverting and minimum tillage. Soil and Tillage Research 196, 104447.
| Crossref | Google Scholar |
BDIA (2019) Pedologia. Available at https://bdiaweb.ibge.gov.br/#/consulta/pedologia [accessed 25 Jul 2022]
Bernardo R, Lorhezani WL, Satolo EG, Caldas MM (2020) Produtividade da cana-de-açúcar em Mato Grosso do Sul e Goiás: uma análise a partir da Visão Baseada em Recursos. Interações 21(2), 419-434.
| Crossref | Google Scholar |
Bispo RdC, Hernandez FBT, Teixeira AHdC (2017) Balanço hídrico e estimativa do consumo relativo de água da cultura da cana-de-açúcar na região Noroeste paulista. Irriga 1(1), 94-101.
| Crossref | Google Scholar |
Bordonal RdO, Menandro LMS, Barbosa LC, Lal R, Milori DMBP, Kolln OT, Franco HCJ, Carvalho JLN (2018a) Sugarcane yield and soil carbon response to straw removal in south-central Brazil. Geoderma 328, 79-90.
| Crossref | Google Scholar |
Bordonal RdO, Carvalho JLN, Lal R, De Figueiredo EB, De Oliveira BG, Scala Júnior NL (2018b) Sustainability of sugarcane production in Brazil. A review. Agronomy for Sustainable Development 38, 13.
| Crossref | Google Scholar |
Caetano JM, Casaroli D (2017) Sugarcane yield estimation for climatic conditions in the state of Goiás. Revista Ceres 64(3), 298-306.
| Crossref | Google Scholar |
Caetano JM, Casaroli D, Junior JA, Quirino DT, Evangelista AWP, Capuchinho FF (2023) Environmental effects on sugarcane growth from on-farm data in the Brazilian Midwest. African Journal of Agricultural Research 19(8), 825-838.
| Crossref | Google Scholar |
Caetano JM, Casaroli D, Alves Junior J, Quirino DT, Evangelista AWP, Capuchinho FF (2024) Forecast sugarcane maturity from agrometeorological data and soil water storage. Australian Journal of Crop Science 18(1), 11-20.
| Crossref | Google Scholar |
Canellas LP, Velloso ACX, Marciano CR, Ramalho JFGP, Rumjanek VM, Rezende CE, Santos GA (2003) Propriedades químicas de um Cambissolo cultivado com cana-de-açúcar, com preservação do palhiço e adição de vinhaça por longo tempo. Revista Brasileira de Ciência do Solo 27(5), 935-944.
| Crossref | Google Scholar |
Carrer MJ, Filho HMdS, Vinholis MdMB, Mozambani CI (2022) Precision agriculture adoption and technical efficiency: an analysis of sugarcane farms in Brazil. Technological Forecasting and Social Change 177, 121510.
| Crossref | Google Scholar |
Casaroli D, Rosa FdO, Júnior JA, Evangelista AWP, De Brito BV, Pena DS (2018) Soil and climatic suitability for African Mahogany in Brazil. Forest Science 28(1), 357-368.
| Crossref | Google Scholar |
Casaroli D, Sanches ID, Quirino DT, Evangelista AWP, Junior JA, Flores RA, Mesquita M, Battisti R (2023) How agrometeorological and water deficit variations influence the growth and yield of sugarcane. Australian Journal of Crop Science 17(9), 741-752.
| Crossref | Google Scholar |
Casaroli D, Sanches ID, Quirino DT, Evangelista AWP, Junior JA, Flores RA, Mesquita M, Battisti R, Rodigheri G, Capuchinho FF (2024) Using crop models, a decline factor, and a “multi-model” approach to estimate sugarcane yield compared to on-farm data. Theoretical and Applied Climatology 155, 2177-2193.
| Crossref | Google Scholar |
Castro FdS, Colatina AC, Xavier AC, Pimenta LR, Venécia CN, Elesbon AAA, Colatina C (2020) Impacto das projeções de mudanças climáticas globais do IPCC no zoneamento agroclimático da cultura da cana-de-açúcar na América do Sul. Brazilian Journal of Development 6(5), 28410-28427.
| Crossref | Google Scholar |
Ceglar A, Toreti A, Lecerf R, Van Der Velde M, Dentener F (2016) Impact of meteorological drivers on regional inter-annual crop yield variability in France. Agricultural and Forest Meteorology 216, 58-67.
| Crossref | Google Scholar |
Cogo FD, Cogo FAD (2019) Curva de retenção de água e condutividade hidráulica de três solos sob frutíferas perenes. Revista em Agronegócio e Meio Ambiente 12(2), 631-641.
| Crossref | Google Scholar |
CONAB (2022) Acompanhamento da safra brasileira de cana-de-açúcar. Segundo Levantamento 11, 1-59.
| Google Scholar |
Da Silva WC, Barbosa HA (2021) Avaliação da precipitação na produtividade agrícola da cana-de-açúcar: estudo de caso usina coruripe para as safras de 2000/2005. Revista Brasileira de Geografia Física 14(3), 1352-1366.
| Crossref | Google Scholar |
Da Silva ES, Carmo ILGdS, Monteiro Neto JLL, De Medeiros RD, Augusti ML, Amaya JZE, Mrhga-Orrilho H, Abanto-Rodríguez C (2020) Cultivo de nueve variedades de sandía bajo condiciones edafoclimáticas de la Sabana brasilera: variables morfológicas, características fisicoquímicas y vida útil de frutos. Scientia Agropecuaria 11(4), 493-501.
| Crossref | Google Scholar |
Da Silva TRG, Da Costa MLA, Farias LRA, Dos Santos MA, Rocha JJdL, Silva JV (2021a) Abiotic factors in plant growth and flowering. Research, Society and Development 10(4), e19710413817.
| Crossref | Google Scholar |
Da Silva CO, Campos S, Mousinho FEP, Oliveira SRM (2021b) Geoprocessamento aplicado ao zoneamento agrícola para cana-de-açúcar irrigada do estado Piauí. Ed: Científica Digital 5, 138-153.
| Google Scholar |
Da Veiga M, Reinert DJ, Reichert JM (2009) Aggregate stability as affected by short and long-term tillage systems and nutrient sources of a Hapludox in southern Brazil. Revista Brasileira de Ciência do Solo 33, 767-777.
| Crossref | Google Scholar |
De Almeida LS, Ferreira VAS, Fernandes LA, Frazão LA, Oliveira ALG, Sampaio eRA (2016) Indicadores de qualidade do solo em cultivos irrigados de cana-de-açúcar. Pesquisa Agropecuária Brasileira 51(9), 1539-1547.
| Crossref | Google Scholar |
De Andrade AF, Flores RA, Casaroli D, Bueno AM, Pessoa-de-Souza MA, De Lima FSR, Marques EP (2021) K dynamics in the soil-plant system for sugarcane crops: a current field experiment under tropical conditions. Sugar Tech 23(6), 1247-1257.
| Crossref | Google Scholar |
De Carvalho LA, Rezende IdS, Panachuki E, Júnior CAdS, Novak E, Silva eGFC (2014) Variáveis físicas do solo e produtividade de cana-de-açúcar sob sistemas de preparo na reforma de canavial. Agrarian Academy 1(1), 259-274.
| Crossref | Google Scholar |
De Freitas L, Casagrande JC, De Oliveira IA, Campos MCC (2015) Atributos químicos de latossolo vermelho submetido a diferentes manejos. Revista Floresta 45(2), 229-240.
| Crossref | Google Scholar |
De Freitas L, De Oliveira IA, Silva LS, Frare JCV, Filla VA, Gomes RP (2017) Indicadores da qualidade química e física do solo sob diferentes sistemas de manejo. Unimar Ciências 26(1–2), 8-25.
| Google Scholar |
De Resende AS, Xavier RP, De Oliveira OC, Urquiaga S, Alves BJR, Boddy RM (2006) Long-term effects of pre-harvest burning and nitrogen and vinasse applications on yield of sugar cane and soil carbon and nitrogen stocks on a plantation in Pernambuco, N.E. Brazil. Plant and Soil 281(1-2), 339-351.
| Crossref | Google Scholar |
Dias HB, Sentelhas PC (2018) Sugarcane yield gap analysis in Brazil – a multi-model approach for determining magnitudes and causes. Science of the Total Environment 637–638, 1127-1136.
| Crossref | Google Scholar | PubMed |
Diniz MdA, Pereira J, Ulhôa JLR, Oliveira A, Borges MV (2021) Avaliação da entomofauna do solo em cana-de-açúcar convencional em diferentes cortes. Brazilian Journal of Animal and Environmental Research 4(4), 5903-5920.
| Crossref | Google Scholar |
EMBRAPA (2022) Solos do Brasil e a cana-de-açúcar. Available at https://www.embrapa.br/en/agencia-de-informacao-tecnologica/cultivos/cana/pre-producao/caracteristicas/solo [accessed 20 November 2022]
Ferreira MAA, Santos GO (2021) Zoneamento agrícola de risco climático para grandes culturas no município de Rio Verde, Goiás. Científic@ - Multidisciplinary Journal 8(1), 1-8.
| Crossref | Google Scholar |
Ferreira Júnior RA, De Souza JL, Lyra GB, Teodoro I, Dos Santos MA, Porfírio ACS (2012) Crescimento e fotossíntese de cana-de-açúcar em função de variáveis biométricas e meteorológicas. Revista Brasileira de Engenharia Agrícola e Ambiental 16(11), 1229-1236.
| Crossref | Google Scholar |
Ferreira Júnior RA, De Souza JL, Escobedo JF, Teodoro I, Lyra GB, De Araújo Neto RA (2014) Cana-de-açúcar com irrigação por gotejamento em dois espaçamentos entrelinhas de plantio. Revista Brasileira de Engenharia Agrícola e Ambiental 18(8), 798-804.
| Crossref | Google Scholar |
Filho FXdO, Miranda NdO, De Medeiros JF, Da Silva PCM, Mesquita FO, Costa TKG (2015) Zona de manejo para preparo do solo na cultura da cana-de-açúcar. Revista Brasileira de Engenharia Agrícola e Ambienta 19(2), 186-193.
| Crossref | Google Scholar |
FAO (2022) FAOSTAT. Available at https://www.fao.org/faostat/en/#data/QCL [accessed 22 September 2022]
Galloway JH (2010) Tradition and innovation in the American sugar industry, c. 1500–1800: an explanation. Annals of the Association of American Geographers 75(3), 334-351.
| Crossref | Google Scholar |
Gobo JPA, Domingues IdAS, Galvani E, Wollmann CA (2018a) Variabilidade climática em episódios ENOS na produtividade da cultura da cana-de-açúcar (Saccharum spp.) nos municípios de Cambé e Mirador - PR. Revista Brasileira de Climatologia 23(14), 72-87.
| Crossref | Google Scholar |
Gobo JPA, Galvani E, Wollmann CA (2018b) Influência do clima regional sobre o clima local a partir do diagnóstico de abrangência espacial e extrapolação escalar. Revista Brasileira de Climatologia 22, 210-228.
| Crossref | Google Scholar |
Guerra A, Barbosa AM, Guidorizi KA, Souza GM (2014) Efeitos da temperatura do ar na fotossíntese da cana-de-açúcar na fase inicial de desenvolvimento. Revista Agrarian 7(24), 211-217.
| Google Scholar |
Hargreaves PR, Baker KL, Graceson A, Bonnett S, Ball BC, Cloy JM (2019) Soil compaction effects on grassland silage yields and soil structure under different levels of compaction over three years. European Journal of Agronomy 109, 125916.
| Crossref | Google Scholar |
Heinemann AB, Sentelhas PC (2011) Environmental group identification for upland rice production in central Brazil. Scientia Agrícola 68(5), 540-547.
| Crossref | Google Scholar |
Heshmati M, Majib N, Jusop S, Gheitury M, Abdu A (2013) Effects of soil and rock mineralogy on soil erosion features in the Merek watershed, Iran. Journal of Geographic Information System 5, 248-257.
| Crossref | Google Scholar |
Hooker TD, Stark JM (2012) Carbon flow from plant detritus and soil organic matter to microbes – linking carbon and nitrogen cycling in semiarid soils. Soil Science Society of America Journal 76(3), 903-914.
| Crossref | Google Scholar |
Iizumi T, Luo J-J, Challinor AJ, Sakurai G, Yokozawa M, Sakuma H, Brown ME, Yagamata T (2014) Impacts of El Niño Southern Oscillation on the global yields of major crops. Nature Communications 5, 3712.
| Crossref | Google Scholar | PubMed |
Ikuemonisan ES, Mafimisebi TE, Ajibefun I, Adenegan K (2020) Cassava production in Nigeria: trends, instability and decomposition analysis (1970–2018). Heliyon 6(10), e05089.
| Crossref | Google Scholar | PubMed |
IBGE (2022) Cidades. Available at https://cidades.ibge.gov.br/ [accessed 27 September 2022]
INMET (2022) Banco de dados meteorológicos para ensino e pesquisa. Available at https://www.inmet.gov.br/ [accessed 25 july 2022]
INPE (2023) Condições atuais do ENOS: La Niña. Avaialable at http://enos.cptec.inpe.br/ [accessed 13 January 2023]
Islami T, Wisnubroto EI, Nugroho WH (2017) Biochar derived from sugarcane industry waste increasing productivity of degraded land. International Journal of Soil Science 12, 1-9.
| Crossref | Google Scholar |
Jin X-B, Yang N-X, Wang X-Y, Bai Y-T, Su T-L, Kong J-L (2020) Hybrid Deep Learning predictor for smart agriculture sensing based on empirical mode decomposition and gated recurrent unit group model. Sensors 20(5), 1334.
| Crossref | Google Scholar | PubMed |
Júnior JCdC, Santos MdSM, Do Carmo MRdB, Silva RF, Batistote M (2021) Avaliação da produtividade e o perfil tecnológico de variedades de cana-de-açúcar da região da Grande Dourados. Brazilian Journal of Development 7(12), 116449-116460.
| Crossref | Google Scholar |
Kalia A, Shukla G, Mishra D, Mishra BP, Patel RR (2021) Comparative trend analysis of mustard in Bundelkhand Region, Uttar Pradesh and India. Indian Journal of Extension Education 57(1), 15-19.
| Google Scholar |
Lacerda ARS, Souza AR, Santos TM, Clemente JM, Duarte AR, Machado MG (2019) Produtividade da cana-de-açúcar em resposta a adubação NPK em diferentes épocas. Humanidades & Tecnologia em Revista (FINOM) 18, 1-7.
| Google Scholar |
Lima CGR, Carvalho MdPe, Souza A, Costa NR, Montanari R (2016) Correlação entre componentes da produtividade da cana-de-açúcar com pH de um Argissolo vermelho distrófico do noroeste paulista. Revista Engenharia na Agricultura - Reveng 24(2), 120-130.
| Crossref | Google Scholar |
Lira RM, Gordin LC, Silva EFdFe, Da Silva GF, Dantas DdC, Morais JEFd (2018) Leaching of cations in soil cultivated with sugarcane subjected to saline irrigation and leaching fractions. Revista Brasileira de Engenharia Agrícola e Ambiental 22(9), 616-621.
| Crossref | Google Scholar |
Lu J, Carbone GJ, Gao P (2017) Detrending crop yield data for spatial visualization of drought impacts in the United States, 1895–2014. Agricultural and Forest Meteorology 237–238, 196-208.
| Crossref | Google Scholar |
Maia Júnior SdO, De Andrade JR, Dos Santos CM, Silva ALJ, Endres L, Silva JV, Silva LKdS (2020) Osmoregulators’ accumulation minimizes the effects of drought stress in sugarcane and contributes to the recovery of photochemical efficiency in photosystem II after rewatering. Acta Physiologiae Plantarum 42, 62.
| Crossref | Google Scholar |
Manhães CMC, Garcia RF, Francelino FMA, Francelino HdO, Coelho FC (2015) Fatores que afetam a brotação e o perfilhamento da cana-de-açúcar. Vértices 17(1), 163-181.
| Crossref | Google Scholar |
Marin FR (2022) Solos do Brasil e a cana-de-açúcar. Available at https://www.embrapa.br/agencia-de-informacao-tecnologica/cultivos/cana/pre-producao/caracteristicas/solo [accessed 10 June 2024]
Marin FR, Nassif DSP (2013) Mudanças climáticas e a cana-de açúcar no Brasil: fisiologia, conjuntura e cenário futuro. Revista Brasileira de Engenharia Agrícola e Ambiental 17(2), 232-239.
| Crossref | Google Scholar |
Martha Junior GB, Alves ERdA, Contini E, Ramos SY (2010) The development of Brazilian agriculture and future challenges. Revista de Política Agrícola 19(special issue), 91-103.
| Google Scholar |
Michel L, Makowski D (2013) Comparison of statistical models for analyzing wheat yield time series. PLoS ONE 8(10), e78615.
| Crossref | Google Scholar |
Morais GMd, Sobrinho JE, Santos WdO, Costa DdO, Da Silva STA, Maniçoba RM (2014) Caracterização da velocidade e direção do vento em Mossoró/RN. Revista Brasileira de Geografia Física 7(4), 746-754.
| Crossref | Google Scholar |
Murali P, Prathap DP (2017) Technical efficiency of sugarcane farms: an econometric analysis. Sugar Tech 19(2), 109-116.
| Crossref | Google Scholar |
Nicchio B, Santos GA, Lino ACM, Ramos LA, Pereira HS, Korndöfer GH (2020) Efeito da adubação foliar em soqueira de cana-de-açúcar. Acta Iguazu 9(2), 10-24.
| Crossref | Google Scholar |
Nicchio B, Korndöfer GH, Pereira HS, Santos GA, Vieira MAM (2021) Efeito da aplicação Foliar de Si, P e K no desenvolvimento, produção e qualidade de soqueira de cana-de-açúcar. Revista em Agronegócio e Meio Ambiente 14(2), 325-338.
| Crossref | Google Scholar |
Paixão JS, Casaroli D, Dos Anjos JCR, Júnior JA, Evangelista AWP, Dias HB, Battisti R (2021) Optimizing sugarcane planting windows using a crop simulation model at the state level. International Journal of Plant Production 15, 303-315.
| Crossref | Google Scholar |
Pannuti LEdR, Baldin ELL, Gava GJdC, Kölln OT, Cruz eJCS (2013) Danos do complexo broca-podridão à produtividade e à qualidade da cana-de-açúcar fertirrigada com doses de nitrogênio. Pesquisa Agropecuária Brasileira 48(4), 381-387.
| Crossref | Google Scholar |
Pereira PAA, Martha GB, Jr, Santana CAM, Alves E (2012) The development of Brazilian agriculture: future technological challenges and opportunities. Agriculture & Food Security 1, 4.
| Crossref | Google Scholar |
Prado EAF, Vitorino ACT, Mauad M, Ensinas SC, Paim LR (2017) Technological characteristics of sugar cane under application of doses the vinasse in Rhodic Hapludox. Revista de Ciências Agroveterinárias 16(4), 386-395.
| Crossref | Google Scholar |
Rehman ZU, Wassan IA, Dost MKB (2012) Socio-economic problems of farmers in Pakistan: focused area Tauluka Pano Akil District Sukkur. Arabian Journal of Business and Management Review (Kuwait Chapter) 1(5), 114-129.
| Google Scholar |
Ricce WdS, De Carvalho SLC, Caromani PH, Roberto SR (2014) Zoneamento agroclimático da cultura da videira no estado do Paraná. Semina: Ciências Agrárias 35(4), 2327-2336.
| Crossref | Google Scholar |
Robotham J, Old G, Rameshwaran P, Sear D, Gasca-Tucker D, Bishop J, Old J, McKnight D (2021) Sediment and nutrient retention in ponds on an agricultural stream: evaluating effectiveness for diffuse pollution mitigation. Water 13(12), 1640.
| Crossref | Google Scholar |
Rodrigo-Comino J, Salvia R, Egidi G, Salvati L, Giménez-Morera A, Quaranta G (2022) Desertification and degradation risks vs poverty: a key topic in Mediterranean Europe. Cuadernos de Investigacíon Geográfica 48(1), 23-40.
| Crossref | Google Scholar |
Rosset JS, Schiavo JA, Atanázio RAR (2014) Atributos químicos, estoque de carbono orgânico total e das frações humificadas da matéria orgânica do solo em diferentes sistemas de manejo de cana-de-açúcar. Semina: Ciências Agrárias 35(5), 2351-2366.
| Crossref | Google Scholar |
Rossi Neto J, De Souza ZM, Oliveira SRdM, Kölln OT, Ferreira DA, Carvalho JLN, Braunbeck AO, Franco HCJ (2017) Use of the decision tree technique to estimate sugarcane productivity under edaphoclimatic conditions. Sugar Tech 19(6), 662-668.
| Crossref | Google Scholar |
Sadiq MS, Singh IP, Ahmad MM, Lawal M (2019) Technical efficiency of rainfed sugarcane producers in Kwara state of Nigeria. Journal of Management and Tecnology 15(1), 36-44.
| Google Scholar |
Sanches GM, Magalhães PSG, Franco HCJ (2019) Site-specific assessment of spatial and temporal variability of sugarcane yield related to soil attributes. Geoderma 334, 90-98.
| Crossref | Google Scholar |
Santi A, Vicari MB, Pandolfo C, Dalmago GA, Massignam AM, Pasinato A (2017) Impacto de cenários futuros de clima no zoneamento agroclimático do trigo na região Sul do Brasil. Revista Brasileira de Meteorologia 25(2), 303-3011.
| Google Scholar |
Satiro LS, Cherubin MR, Lisboa IP, Noia Júnior RdS, Cerri CC, Cerri CEP (2019) Prediction of sugarcane yield by soil attributes under straw removal management. Agronomy Journal 111(1), 14-23.
| Crossref | Google Scholar |
Shi W, Tao F, Zhang Z (2013) A review on statistical models for identifying climate contributions to crop yields. Journal of Geographical Sciences 23, 567-576.
| Crossref | Google Scholar |
Signor D, Zani CF, Paladini AA, Deon MD, Cerri CEP (2014) Estoques de carbono e qualidade da matéria orgânica do solo em áreas cultivadas com cana-de-açúcar. Revista Brasileira de Ciência do Solo 38(5), 1402-1410.
| Crossref | Google Scholar |
Silva LF, Souza LSB, Fonseca KS (2022) Interferências da temperatura e da luminosidade no crescimento vegetativo de gladíolo. Journal of Environmental Analysis and Progress 7(2), 83-90.
| Crossref | Google Scholar |
Simões WL, De Oliveira AR, Salviano AM, Da Silva JS, Calgaro M, Guimarães MJM (2021) Efficient irrigation management in sugarcane cultivation in saline soil. Revista Brasileira de Engenharia Agrícola e Ambiental 25(9), 626-632.
| Crossref | Google Scholar |
Singerman D (2018) Sugar machines and the fragile infrastructure of commodities in the nineteenth century. Osiris 33(1), 63-84.
| Crossref | Google Scholar |
SIDRA (2022) Produção Agrícola Municipal. Available at https://sidra.ibge.gov.br/tabela/5457 [accessed 25 July 2022]
Toloto MdO, Lima A, Figueiredo D, Fonseca F, Hernández Z, Figueiredo T (2023) Prediction of soil organic carbon using colorimetric parameters: an example in Leptosols (NE Portugal). Revista de Ciências Agrárias 46, 215-220.
| Crossref | Google Scholar |
USDA (1999) ‘Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys.’ 2nd edn. Handbook 436. (Natural Resources Conservation Service) Available at https://www.nrcs.usda.gov/resources/guides-and-instructions/soil-taxonomy
Wakgari T, Kibret K, Bedadi B, Temesgem M, Erkossa T (2020) Effects of long term sugarcane production on soils physicochemical properties at Finchaa sugar Estate. Journal of Soil Science and Environmental Management 11(1), 30-40.
| Crossref | Google Scholar |
WRB/FAO (2022) ‘International soil classification system for naming soils and creating legends for soil maps.’ 4th edn. (International Union of Soil Sciences (IUSS), Vienna, Austria) Available at https://www.isric.org/sites/default/files/WRB_fourth_edition_2022-12-18.pdf
Xavier AC, Scanlon BR, King CW, Alves AI (2022) New improved Brazilian daily weather gridded data (1961–2020). International Journal of Climatology 42(16), 8390-8404.
| Crossref | Google Scholar |
Yang C, Yang L, Ouyang Z (2005) Organic carbon and its fractions in paddy soil as affected by different nutrient and water regimes. Geoderma 124(1–2), 133-142.
| Crossref | Google Scholar |
Zhao X, Arshad M, Li N, Zare E, Triantafilis J (2020) Determination of the optimal mathematical model, sample size, digital data and transect spacing to map CEC (Cation exchange capacity) in a sugarcane field. Computers and Electronics in Agriculture 173, 105436.
| Crossref | Google Scholar |
Zhu L, Jia X, Li M, Wang Y, Zhang J, Hou J, Wang X (2021) Associative effectiveness of bio-organic fertilizer and soil conditioners derived from the fermentation of food waste applied to greenhouse saline soil in Shan Dong Province, China. Applied Soil Ecology 167, 104006.
| Crossref | Google Scholar |