Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

The growth habits of tropical legumes affect the nutritive herbage value more than harvesting frequency

Tafnes B. Sales-Silva https://orcid.org/0000-0002-2883-8433 A * , Mércia V. F. dos Santos A , Osniel F. de Oliveira A , Pedro H. F. da Silva https://orcid.org/0000-0002-0794-4499 A , Evaristo J. O. de Souza B , Djalma E. Simões Neto C , Abdias J. da Silva Neto A and Márcio V. da Cunha A
+ Author Affiliations
- Author Affiliations

A Department of Animal Science, Federal Rural University of Pernambuco, Rua Dom Manoel de Medeiros, s/n, Recife, Pernambuco 52171-900, Brazil.

B Academic Unit of Serra Talhada, Federal Rural University of Pernambuco, Serra Talhada, Pernambuco, Brazil.

C Sugarcane Experimental Station of Carpina, Federal Rural University of Pernambuco, Carpina, Pernambuco, Brazil.

* Correspondence to: tafnesbernardo@gmail.com

Handling Editor: Brendan Cullen

Crop & Pasture Science 75, CP23109 https://doi.org/10.1071/CP23109
Submitted: 18 April 2023  Accepted: 8 October 2023  Published: 30 October 2023

© 2024 The Author(s) (or their employer(s)). Published by CSIRO Publishing

Abstract

Context

Harvest regimes may change the nutritive herbage value of tropical legumes depending on growth habit and regrowth capability.

Aim

This study aimed to compare the nutritive values of butterfly pea herb (Clitoria ternatea L.) to the sub-shrub stylo cv. Campo Grande (Stylosanthes capitata Vog. × Stylosanthes macrocephala M. B. Ferr. & N. S. Costa) and shrub hedge lucerne (Desmanthus pernambucanus (L.) Thellung) harvested at 60 and 90-day regrowth.

Methods

The trial used a randomised complete block design with a split-plot arrangement and four replicates. Leaves and stems were collected in the rainy seasons of 2019 and 2020 and analysed for chemical-bromatological composition and digestibility.

Key results

Higher crude protein contents were observed in butterfly pea (233 g/kg) than in stylo leaves (179 g/kg). Elevated proportions of insoluble fractions of carbohydrates (259 g/kg) and proteins (137 g/kg) were found in hedge lucerne leaves, also extremely high levels of condensed tannins (303 g/kg). High levels of dry matter digestibility were found in stylo (788 g/kg) and butterfly pea leaves (774 g/kg). The harvest frequencies changed the nutritive values inconsistently.

Conclusions

The butterfly pea herb and the sub-shrub stylo cv. Campo Grande can be managed under varied harvest frequencies without changing the nutritional value significantly. Prolonged harvest intervals must be avoided in hedge lucerne management for animal feeding because of its high contents of secondary metabolites.

Implications

This study restated the already-known nutritional variations among tropical legumes due to different growth habits and revealed a significant presence of condensed tannins in hedge lucerne’s leaves.

Keywords: chemical-bromatological composition, Clitoria ternatea, condensed tannins, cutting management, Desmanthus sp., digestibility, phenolic compounds, Stylosanthes sp.

References

Abreu MLC, Vieira RAM, Rocha NS, Araujo RP, Glória LS, Fernandes AM, de Lacerda PD, Júnior AG (2014) Clitoria ternatea L. as a potential high quality forage legume. Asian-Australasian Journal of Animal Sciences 27, 169-178.
| Crossref | Google Scholar | PubMed |

Alvares CA, Stape JL, Sentelhas PC, de Moraes Gonçalves JL, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22, 711-728.
| Crossref | Google Scholar |

Anjos ANAd, Almeida JCdC, Viegas CR, Silva PHFd, Morais LFd, Nepomuceno DdD, Carvalho CABd, Soares FA (2022) Protein and carbohydrate profiles of ‘Massai’ grass silage with pelleted citrus pulp and microbial inoculant. Pesquisa Agropecuária Brasileira 57, e02732.
| Crossref | Google Scholar |

Azani N, Babineau M, Bailey CD, Banks H, Barbosa AR, Pinto RB, et al. (2017) A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny: the Legume Phylogeny Working Group (LPWG). Taxon 66, 44-77.
| Crossref | Google Scholar |

Bautista I, Boscaiu M, Lidón A, Llinares JV, Lull C, Donat MP, Mayoral O, Vicente O (2016) Environmentally induced changes in antioxidant phenolic compounds levels in wild plants. Acta Physiologiae Plantarum 38, 9.
| Crossref | Google Scholar |

Boddey RM, Casagrande DR, Homem BGC, Alves BJR (2020) Forage legumes in grass pastures in tropical Brazil and likely impacts on greenhouse gas emissions: a review. Grass and Forage Science 75, 357-371.
| Crossref | Google Scholar |

Calado TB, Cunha MV, Teixeira VI, Santis MVF, Cavalcanti HS, Lira CC (2016) Morphology and productivity of ‘Jureminha’ genotypes (Desmanthus spp.) under different cutting intensities. Revista Caatinga 29, 742-752.
| Crossref | Google Scholar |

Castro-Montoya JM, Dickhoefer U (2020) The nutritional value of tropical legume forages fed to ruminants as affected by their growth habit and fed form: a systematic review. Animal Feed Science and Technology 269, 114641.
| Crossref | Google Scholar |

Cavalcanti FJA, Lima Júnior MA, Lima J (2008) ‘Fertilisation recommendation for the Pernambuco State: 2nd approximation.’ (Agronomic Institute from Pernambuco State: Recife, PE, Brazil) [In Portuguese]

Chand S, Indu , Singhal RK, Govindasamy P (2022) Agronomical and breeding approaches to improve the nutritional status of forage crops for better livestock productivity. Grass and Forage Science 77, 11-32.
| Crossref | Google Scholar |

Cope OL, Kruger EL, Rubert-Nason KF, Lindroth RL (2019) Chemical defense over decadal scales: ontogenetic allocation trajectories and consequences for fitness in a foundation tree species. Functional Ecology 33, 2105-2115.
| Crossref | Google Scholar |

Detmann E, Souza MD, Valadares Filho SDC, Queiroz AD, Berchielli TT, Saliba EDO, Azevedo JAG (2021) ‘Métodos para análise de alimentos’. (Suprema: Visconde de Rio Branco, Brazil) [In Portuguese]

Diniz WPS, Santos MVF, Verás ASC, Cunha MV, Simões Neto DE, Souza TC, Dubeux JCB, Jr, Abreu DS, Ferreira RLC (2021) Morphological, productive, and nutritional characterization of Desmanthus spp. accessions under different cutting intensities. Agroforestry Systems 95, 571-581.
| Crossref | Google Scholar |

Engels FM, Jung HG (1998) Alfalfa stem tissues: cell-wall development and lignification. Annals of Botany 82, 561-568.
| Crossref | Google Scholar |

Epifanio PS, de Pinho Costa KA, da Costa Severiano E, Ferreira de Souza W, Teixeira DAA, Torres da Silva J, de Moura Aquino M (2019) Productive and nutritional characteristics of Brachiaria brizantha cultivars intercropped with Stylosanthes cv. Campo Grande in different forage systems. Crop & Pasture Science 70, 718-729.
| Crossref | Google Scholar |

Ferreira AL, Maurício RM, Pereira LGR, Azevêdo JAG, Oliveira LS, Pereira JM (2012) Nutritional divergence in genotypes of forage peanut. Revista Brasileira de Zootecnia 41, 856-863.
| Crossref | Google Scholar |

Hagerman AE, Butler LG (1978) Protein precipitation method for the quantitative determination of tannins. Journal of Agricultural and Food Chemistry 26, 809-812.
| Crossref | Google Scholar |

Hall MB (2003) Challenges with nonfiber carbohydrate methods. Journal of Animal Science 81, 3226-3232.
| Crossref | Google Scholar | PubMed |

Hammond KJ, Hoskin SO, Burke JL, Waghorn GC, Koolaard JP, Muetzel S (2011) Effects of feeding fresh white clover (Trifolium repens) or perennial ryegrass (Lolium perenne) on enteric methane emissions from sheep. Animal Feed Science and Technology 166-167, 398-404.
| Crossref | Google Scholar |

Hofmann RR (1989) Evolutionary steps of ecophysiological adaptation and diversification of ruminants: a comparative view of their digestive system. Oecologia 78, 443-457.
| Crossref | Google Scholar | PubMed |

Holden LA (1999) Comparison of methods of in vitro dry matter digestibility for ten feeds. Journal of Dairy Science 82, 1791-1794.
| Crossref | Google Scholar | PubMed |

Horwitz W (2005) ‘Official methods of analysis of AOAC International’. 18th edn. (AOAC: Gaithersburg). Official Methods: 973.18 (lignin), 954.01 (crude protein).

Krawutschke M, Kleen J, Weiher N, Loges R, Taube F, Gierus M (2013) Changes in crude protein fractions of forage legumes during the spring growth and summer regrowth period. The Journal of Agricultural Science 151, 72-90.
| Crossref | Google Scholar |

Ku-Vera JC, Jiménez-Ocampo R, Valencia-Salazar SS, Montoya-Flores MD, Molina-Botero IC, Arango J, Gómez-Bravo CA, Aguilar-Pérez CF, Solorio-Sánchez FJ (2020) Role of secondary plant metabolites on enteric methane mitigation in ruminants. Frontiers in Veterinary Science 7, 584.
| Crossref | Google Scholar |

Lagunes-Rivera SA, Guerrero-Rodríguez JdD, Hernández-Vélez JO, Ramírez-González JdJM, García-Bonilla DV, Alatorre-Hernández A (2019) Dry matter yield and nutritional value of four herbaceous legumes in the tropical zone of Hueytamalco, Puebla, Mexico. Revista Mexicana de Ciencias Pecuarias 10, 1042-1053 [In Spanish].
| Crossref | Google Scholar |

Lee MA (2018) A global comparison of the nutritive values of forage plants grown in contrasting environments. Journal of Plant Research 131, 641-654.
| Crossref | Google Scholar | PubMed |

Lemaire G, Belanger G (2020) Allometries in plants as drivers of forage nutritive value: a review. Agriculture 10, 5.
| Crossref | Google Scholar |

Licitra G, Hernandez TM, Van Soest PJ (1996) Standardization of procedures for nitrogen fractionation of ruminant feeds. Animal Feed Science and Technology 57, 347-358.
| Crossref | Google Scholar |

Medeiros AS, Teixeira VI, Cavalcanti CPL, Oliveira EN, Silva SLF, Santos MVF (2020) Biomass production and chemical bromatological composition of jureminha submitted to increasing saline levels. Archivos de Zootecnia 69, 54-64.
| Crossref | Google Scholar |

Medeiros AS, dos Santos MVF, da Cunha MV, de Mello ACL, Simões Neto DE, de Oliveira OF, Muir JP, Dubeux JCB, Jr., dos Santos AE (2023) Morphology, accumulation and survival of Desmanthus under different planting densities and harvest heights. Grass and Forage Science 78, 161-172.
| Crossref | Google Scholar |

Muir JP, Santos MVF, Cunha MVd, Dubeux JCB, Jr., Lira MdA, Jr., Souza RTdA, Souza TCd (2019) Value of endemic legumes for livestock production on Caatinga rangelands. Revista Brasileira de Ciências Agrárias 14, 1-12.
| Crossref | Google Scholar |

Nelson CJ, Moser LE (1994) ‘Plant factors affecting forage quality’. In ‘Forage quality, evaluation, and utilization’. (Ed. GC Fahey) pp. 115–154. (ASA, CSSA and SSSA Books: Madison, WI, USA)

Oguis GK, Gilding EK, Jackson MA, Craik DJ (2019) Butterfly pea (Clitoria ternatea), a cyclotide-bearing plant with applications in agriculture and medicine. Frontiers in Plant Science 10, 645.
| Crossref | Google Scholar |

Oliveira OFd, Santos MVFd, Muir JP, Cunha MVd, Souza EJOd, Tedeschi LO, Naumann HD, Mello ACLd, Meireles MS (2022) Condensed tannins bioactivity and nutritional value of Bauhinia cheilantha (Bong) Steud. under sheep grazing and different forage allowances. Biochemical Systematics and Ecology 100, 104359.
| Crossref | Google Scholar |

Pitman WD, Vendramini JMB (2020) Legumes for tropical and subtropical areas. In ‘Forages, Volume 2: the science of grassland agriculture’. 7th edn. (Eds KJ Moore, M Collins, CJ Nelson, DD Redfearn) pp. 277–296. (Wiley Blackwell Publishing: West Sussex, UK)

Ribeiro REP, de Mello ACL, da Cunha MV, de Miranda Costa SB, Coelho JJ, de Souza RTA, dos Santos MVF (2023) Irrigation effects on elephant grass morphology, and its genotype-dependent responses. Grass and Forage Science 78, 194-203.
| Crossref | Google Scholar |

Rocha ITM, Bezerra NS, Freire FJ, Souza ERd, Santos Freire MBGd, Oliveira ECA, Simões Neto DE (2017) Aluminum buffering in acid soil under mineral gypsum application. African Journal of Agricultural Research 12, 597-605.
| Crossref | Google Scholar |

Russell JB, O’Connor JD, Fox DG, Van Soest PJ, Sniffen CJ (1992) A net carbohydrate and protein system for evaluating cattle diets: I. Ruminal fermentation. Journal of Animal Science 70, 3551-3561.
| Crossref | Google Scholar | PubMed |

Santos HG, Jacomine PKT, Anjos LHC, Oliveira VA (2018) ‘Sistema Brasileiro de Classificação de Solos’. 5th edn. (Embrapa: Brasília)

SAS Institute Inc. (2014) ‘SAS® OnDemand for academics: user’s guide’. (SAS Institute Inc: Cary, NC, USA)

Schmitt MH, Ward D, Shrader AM (2020) Salivary tannin-binding proteins: a foraging advantage for goats? Livestock Science 234, 103974.
| Crossref | Google Scholar |

Schultze-Kraft R, Rao IM, Peters M, Clements RJ, Bai C, Liu G (2018) Tropical forage legumes for environmental benefits: an overview. Tropical Grasslands-Forrajes Tropicales 6, 1-14.
| Crossref | Google Scholar |

Silva VJd, Dubeux Junior JCB, Teixeira VI, Santos MVFd, Lira MdA, Mello ACLd (2010) Características morfológicas e produtivas de leguminosas forrageiras tropicais submetidas a duas frequências de corte. Revista Brasileira de Zootecnia 39, 97-102.
| Crossref | Google Scholar |

Silva MJdS, Silva DKdA, Magalhães ALR, Pereira KP, Silva ÉCLd, Cordeiro FSB, Noronha CTd, Santos KCd (2017) Influence of the period of year on the chemical composition and digestibility of pasture and fodder selected by goats in caatinga. Revista Brasileira de Saúde e Produção Animal 18, 402-416.
| Crossref | Google Scholar |

Silva PHFd, Santos MVFd, de Mello ACL, Silva TBS, Neto DES, da Silva VJ, Dubeux JCB, Coelho JJ, Souza EJOd, da Cunha MV (2023) Agronomic responses and herbage nutritive value of elephant grass (Cenchrus purpureus) genotypes grown as monocrops and mixed with butterfly pea (Clitoria ternatea). Crop & Pasture Science 74,.
| Crossref | Google Scholar |

Sniffen CJ, O’Connor JD, Van Soest PJ, Fox DG, Russell JB (1992) A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. Journal of Animal Science 70, 3562-3577.
| Crossref | Google Scholar | PubMed |

Solati Z, Jørgensen U, Eriksen J, Søegaard K (2018) Estimation of extractable protein in botanical fractions of legume and grass species. Grass and Forage Science 73, 572-581.
| Crossref | Google Scholar |

Sorieul M, Dickson A, Hill SJ, Pearson H (2016) Plant fibre: molecular structure and biomechanical properties, of a complex living material, influencing its deconstruction towards a biobased composite. Materials 9, 618.
| Crossref | Google Scholar | PubMed |

Ta HT, Teixeira EI, Brown HE, Moot DJ (2020) Yield and quality changes in lucerne of different fall dormancy ratings under three defoliation regimes. European Journal of Agronomy 115, 126012.
| Crossref | Google Scholar |

’t Mannetje L, Jones RM (2000) ‘Field and laboratory methods for grassland and animal production research.’ (CABI Publishing: Wallingford, UK)

Valente TNP, Lima EdS, Gomes DI, dos Santos WBR, Cesário AS, Santos SdC (2016) Anatomical differences among forage with respect to nutrient availability for ruminants in the tropics: a review. African Journal of Agricultural Research 11, 1585-1592.
| Crossref | Google Scholar |

Wam HK, Stolter C, Nybakken L (2017) Compositional changes in foliage phenolics with plant age, a natural experiment in boreal forests. Journal of Chemical Ecology 43, 920-928.
| Crossref | Google Scholar | PubMed |

Wang Y, Majak W, McAllister TA (2012) Frothy bloat in ruminants: cause, occurrence, and mitigation strategies. Animal Feed Science and Technology 172, 103-114.
| Crossref | Google Scholar |

Wilson JR, Mertens DR (1995) Cell wall accessibility and cell structure limitations to microbial digestion of forage. Crop Science 35, 251-259.
| Crossref | Google Scholar |

Wolfe RM, Terrill TH, Muir JP (2008) Drying method and origin of standard affect condensed tannin (CT) concentrations in perennial herbaceous legumes using simplified butanol-HCl CT analysis. Journal of the Science of Food and Agriculture 88, 1060-1067.
| Crossref | Google Scholar |