Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
REVIEW

Forages for feedstocks of biorefineries in temperate environments: review of lignin research in bioenergy crops and some insight into Miscanthus studies

Maria S. Dwiyanti A , J. Ryan Stewart B and Toshihiko Yamada A C
+ Author Affiliations
- Author Affiliations

A Field Science Center for Northern Biosphere, Hokkaido University, Sapporo, Japan.

B Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA.

C Corresponding author. Email: yamada@fsc.hokudai.ac.jp

Crop and Pasture Science 65(11) 1199-1206 https://doi.org/10.1071/CP14039
Submitted: 24 January 2014  Accepted: 23 April 2014   Published: 20 June 2014

Abstract

Rhizomatous and perennial warm-season C4 grasses such as Miscanthus spp. and switchgrass (Panicum virgatum) are potential bioenergy crops for temperate regions. However, lignin in Miscanthus and switchgrass inhibits the cellulose digestion process during bioethanol production. One of the targets for improvement of forages from feedstocks to bioenergy crops is to develop a cost-efficient biorefinery process through lignin content manipulation. Numerous reports have shown that RNAi suppression of lignin-biosynthesis pathway genes can increase biomass fermentable sugar yields for biofuel production. These studies have also reported that RNAi suppression of cell-wall lignin biosynthesis can decrease biomass yield and resistance to biotic stress in the transgenic plants. Transcriptome and metabolome approaches can be used to clarify the networks and pathways of lignin biosynthesis to facilitate the identification of appropriate target genes for transformation. However, whole-genome sequencing of the forage species, which provides much-needed genomic information, is limited. Germplasm of natural, low-lignin mutants also plays a role in identification of genetic regulation of lignin content and this would be useful breeding material. Molecular markers have been developed and utilised to accelerate identification of quantitative trait loci/genes for traits relating to the biorefinery process. All of these studies will serve as basic information for supporting genetic improvement through classical breeding or genetic transformation, and offer the opportunity to develop cultivars which have enhanced biomass and are cost-efficient for biorefinery process.


References

Adati S, Shiotani I (1962) The cytotaxonomy of the genus Miscanthus and its phylogenic status. Bulletin of the Faculty of Agriculture, Mie University 25, 1–14.

Allison GG, Morris C, Clifton-Brown J, Lister SJ, Donnison IS (2011) Genotypic variation in cell wall composition in a diverse set of 244 accessions of Miscanthus. Biomass and Bioenergy 35, 4740–4747.
Genotypic variation in cell wall composition in a diverse set of 244 accessions of Miscanthus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFWjt7vI&md5=fbd9bf003561f8acf63b8a39b908f486CAS |

Atienza SG, Satovic Z, Petersen KK, Dolstra O, Martin A (2002) Preliminary genetic linkage map of Miscanthus sinensis with RAPD markers. Theoretical and Applied Genetics 105, 946–952.
Preliminary genetic linkage map of Miscanthus sinensis with RAPD markers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XosVCntb4%3D&md5=4dce28cf8932d93b06c3918762e18360CAS |

Atienza SG, Ramirez MC, Martin A (2003a) Mapping QTLs controlling flowering date in Miscanthus sinensis Anderss. Cereal Research Communications 31, 265–271.

Atienza SG, Satovic Z, Petersen KK, Dolstra O, Martin A (2003b) Identification of QTLs associated with yield and its components in Miscanthus sinensis Anderss. Euphytica 132, 353–361.
Identification of QTLs associated with yield and its components in Miscanthus sinensis Anderss.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtVGru70%3D&md5=1c44d630b5315b259eb2abce93ef69e2CAS |

Atienza SG, Satovic Z, Petersen KK, Dolstra O, Martin A (2003c) Identification of QTLs influencing agronomic traits in Miscanthus sinensis Anderss. I. Total height, flag-leaf height and stem diameter. Theoretical and Applied Genetics 107, 123–129.

Atienza SG, Satovic Z, Petersen KK, Dolstra O, Martin A (2003d) Identification of QTLs influencing combustion quality in Miscanthus sinensis Anderss. II. Chlorine and potassium content. Theoretical and Applied Genetics 107, 857–863.
Identification of QTLs influencing combustion quality in Miscanthus sinensis Anderss. II. Chlorine and potassium content.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3svhs1amsQ%3D%3D&md5=9172cb988f1fa2c8cb5221a48c22f92eCAS | 12955211PubMed |

Atienza SG, Satovic Z, Petersen KK, Dolstra O, Martin A (2003e) Influencing combustion quality in Miscanthus sinensis Anderss.: identification of QTLs for calcium, phosphorus and sulphur content. Plant Breeding 122, 141–145.
Influencing combustion quality in Miscanthus sinensis Anderss.: identification of QTLs for calcium, phosphorus and sulphur content.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvFGktb4%3D&md5=a0ed31beaaeedcb4fe9d0de28c87c9b1CAS |

Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annual Review of Plant Biology 54, 519–546.
Lignin biosynthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntFSnsrg%3D&md5=877fc23d89cfe630474aff57226fde93CAS | 14503002PubMed |

Bottcher A, Cesarino I, dos Santos AB, Vicentini R, Mayer JLS, Vanholme R, Morreel K, Goeminne G, Moura JCMS, Nobile PM, Carmello-Guerreiro SM, dos Anjos IA, Creste S, Boerjan W, de Andrade MG, Mazzafera P (2013) Lignification in sugarcane: Biochemical characterization, gene discovery, and expression analysis in two genotypes contrasting for lignin content. Plant Physiology 163, 1539–1557.
Lignification in sugarcane: Biochemical characterization, gene discovery, and expression analysis in two genotypes contrasting for lignin content.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFWqt7vF&md5=f302fbdc9ccc94615b77e487cf7654e0CAS | 24144790PubMed |

Bout S, Vermerris W (2003) A candidate-gene approach to clone the sorghum Brown midrib gene encoding caffeic acid O-methyltransferase. Molecular Genetics and Genomics 269, 205–214.

Chen F, Dixon RA (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nature Biotechnology 25, 759–761.
Lignin modification improves fermentable sugar yields for biofuel production.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnsFarurY%3D&md5=0a700dc5450b972662b19e48c8767092CAS | 17572667PubMed |

Chen W, VanOpdorp N, Fitzl D, Tewari J, Friedemann P, Greene P, Thompson S, Kumpatla S, Zheng P (2012a) Transposon insertion in a cinnamyl alcohol dehydrogenase gene is responsible for a brown midrib1 mutation in maize. Plant Molecular Biology 80, 289–297.
Transposon insertion in a cinnamyl alcohol dehydrogenase gene is responsible for a brown midrib1 mutation in maize.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhtleiu7%2FF&md5=6a41d8871cc1ee2cfee0e80c492fb2ddCAS | 22847075PubMed |

Chen Y, Liu H, Ali F, Scott MP, Ji Q, Frei UK, Lübberstedt T (2012b) Genetic and physical fine mapping of the novel brown midrib gene bm6 in maize (Zea mays L.) to a 180 kb region on chromosome 2. Theoretical and Applied Genetics 125, 1223–1235.
Genetic and physical fine mapping of the novel brown midrib gene bm6 in maize (Zea mays L.) to a 180 kb region on chromosome 2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlKksLbF&md5=ac3bcf6566d917c1b8fbc266d068db74CAS | 22714805PubMed |

Cherney JH, Cherney DJR, Akin DE, Axtell JD (1991) Potential of brown-midrib, low lignin mutants for improving forage quality. Advances in Agronomy 46, 157–198.
Potential of brown-midrib, low lignin mutants for improving forage quality.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhvFaltbk%3D&md5=b0bbfb809882de8f4573f46f29c6e50dCAS |

Coleman HD, Park JY, Nair R, Chapple C, Mansfield SD (2008) RNAi-mediated suppression of p-coumaroyl-CoA 3′-hydroxylase in hybrid poplar impacts lignin deposition and soluble secondary metabolism. Proceedings of the National Academy of Sciences of the United States of America 105, 4501–4506.
RNAi-mediated suppression of p-coumaroyl-CoA 3′-hydroxylase in hybrid poplar impacts lignin deposition and soluble secondary metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkt1eiu7k%3D&md5=705b47003e824b4b16b120552e84c746CAS | 18316744PubMed |

Dauwe R, Morreel K, Goeminne G, Gielen B, Rohde A, Beeumen JV, Ralph J, Boudet AM, Kopka J, Rochange SF, Halpin C, Messens E, Boerjan W (2007) Molecular phenotyping of lignin-modified tobacco reveals associated changes in cell-wall metabolism, primary metabolism, stress metabolism and photorespiration. The Plant Journal 52, 263–285.
Molecular phenotyping of lignin-modified tobacco reveals associated changes in cell-wall metabolism, primary metabolism, stress metabolism and photorespiration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlSis7nI&md5=e0afa82e5fed49ad5cbf2bda744d6004CAS | 17727617PubMed |

Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6, e19379
A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtVKru7Y%3D&md5=30f9598e100fb686f039fe3cd5660cd7CAS | 21573248PubMed |

Franke R, Hemm MR, Denault JW, Ruegger MO, Humphreys JM, Chapple C (2002) Changes in secondary metabolism and deposition of an unusual lignin in the ref8 mutant of Arabidopsis. The Plant Journal 30, 47–59.
Changes in secondary metabolism and deposition of an unusual lignin in the ref8 mutant of Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvFGhu7Y%3D&md5=725314e521f0fd82fd4d0bc6832a3e5bCAS | 11967092PubMed |

Fu C, Xiao X, Xi Y, Ge Y, Chen F, Bouton J, Dixon RA, Wang ZY (2011) Downregulation of cinnamyl alcohol dehydrogenase (CAD) leads to improved saccharification efficiency in switchgrass. BioEnergy Research 4, 153–164.
Downregulation of cinnamyl alcohol dehydrogenase (CAD) leads to improved saccharification efficiency in switchgrass.Crossref | GoogleScholarGoogle Scholar |

Gorthy S, Mayandi K, Faldu D, Dalal M (2013) Molecular characterization of allelic variation in spontaneous brown midrib mutants of sorghum (Sorghum bicolor (L.) Moench). Molecular Breeding 31, 795–803.
Molecular characterization of allelic variation in spontaneous brown midrib mutants of sorghum (Sorghum bicolor (L.) Moench).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlsFWnt7s%3D&md5=cc384bc0e8215f842b7ef2abbf8275d7CAS |

Guillaumie S, Pichon M, Martinant JP, Bosio M, Goffner D, Barriere Y (2007) Differential expression of phenylpropanoid and related genes in brown-midrib bm1, bm2, bm3, and bm4 young near-isogenic maize plants. Planta 226, 235–250.
Differential expression of phenylpropanoid and related genes in brown-midrib bm1, bm2, bm3, and bm4 young near-isogenic maize plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltlSrs7g%3D&md5=2eb9cf6d9a29c3692462c06f80989252CAS | 17226026PubMed |

Halpin C, Holt K, Chojecki J, Oliver D, Chabbert B (1998) Brown midrib maize (bm1)—a mutation affecting the cinnamyl alcohol dehydrogenase gene. The Plant Journal 14, 545–553.
Brown midrib maize (bm1)—a mutation affecting the cinnamyl alcohol dehydrogenase gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXksVyhtLk%3D&md5=4446651a25e2b22f78862b549fc35ef0CAS | 9675900PubMed |

Hodgson EM, Lister SJ, Bridgwater AV, Clifton-Brown J, Donnison IS (2010) Genotypic and environmentally derived variation in the cell wall composition of Miscanthus in relation to its use as a biomass feedstock. Biomass and Bioenergy 34, 652–660.
Genotypic and environmentally derived variation in the cell wall composition of Miscanthus in relation to its use as a biomass feedstock.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltF2gsbk%3D&md5=7dd6872db007f25037c18d6bbee1fd66CAS |

Hodkinson TR, Chase MW, Lledó MD, Salamin N, Renvoize SA (2002) Phylogenetics of Miscanthus saccharum and related genera (Saccharinae Andropogoneae Poaceae) based on DNA sequences from ITS nuclear ribosomal DNA and plastid trnL intron and trnL-F intergenic spacers. Journal of Plant Research 115, 381–392.
Phylogenetics of Miscanthus saccharum and related genera (Saccharinae Andropogoneae Poaceae) based on DNA sequences from ITS nuclear ribosomal DNA and plastid trnL intron and trnL-F intergenic spacers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvVKhsw%3D%3D&md5=5a53ba2400e5604ae8bfb86c518ca0b8CAS | 12579363PubMed |

Huang HH, Xu LL, Tong ZK, Lin EP, Liu QP, Cheng LJ, Zhu MY (2012) De novo characterization of the Chinese fir (Cunninghamia lanceolata) transcriptome and analysis of candidate genes involved in cellulose and lignin biosynthesis. BMC Genomics 13, 648
De novo characterization of the Chinese fir (Cunninghamia lanceolata) transcriptome and analysis of candidate genes involved in cellulose and lignin biosynthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjsVamu70%3D&md5=5376689023b45aa68c61c4cf132265c1CAS | 23171398PubMed |

Jung JH, Vermerris W, Gallo M, Fedenko JR, Erickson JE, Altpeter F (2013) RNA interference suppression of lignin biosynthesis increases fermentable sugar yields for biofuel production from field-grown sugarcane. Plant Biotechnology Journal 11, 709–716.
RNA interference suppression of lignin biosynthesis increases fermentable sugar yields for biofuel production from field-grown sugarcane.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFajtrfF&md5=9fd171a3f8712c73dbbb0d5d86419bc5CAS | 23551338PubMed |

Kim C, Zhang D, Auckland SA, Rainville LK, Jakob K, Kronmiller B, Sacks EJ, Deuter M, Paterson AH (2012) SSR-based genetic maps of Miscanthus sinensis and M. sacchariflorus, and their comparison to sorghum. Theoretical and Applied Genetics 124, 1325–1338.
SSR-based genetic maps of Miscanthus sinensis and M. sacchariflorus, and their comparison to sorghum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xls1Sitrk%3D&md5=167125b0370acd3e2c21b47b2b0c54c0CAS | 22274765PubMed |

Lafferty J, Lelley T (1994) Cytogenetic studies of different Miscanthus species with potential for agricultural use. Plant Breeding 113, 246–249.
Cytogenetic studies of different Miscanthus species with potential for agricultural use.Crossref | GoogleScholarGoogle Scholar |

Li X, Bonawitz ND, Weng JK, Chapple C (2010) The growth reduction associated with repressed lignin biosynthesis in Arabidopsis thaliana is independent of flavonoids. The Plant Cell 22, 1620–1632.
The growth reduction associated with repressed lignin biosynthesis in Arabidopsis thaliana is independent of flavonoids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptVegur0%3D&md5=641d3b8e2265c03da1d2c69af93261ffCAS | 20511296PubMed |

Ma XF, Jensen E, Alexandrov N, Troukhan M, Zhang L, Thomas-Jones S, Farrar K, Clifton-Brown J, Donnison I, Swaller T, Flavell R (2012) High resolution genetic mapping by genome sequencing reveals genome duplication and tetraploid genetic structure of the diploid Miscanthus sinensis. PLoS ONE 7, e33821
High resolution genetic mapping by genome sequencing reveals genome duplication and tetraploid genetic structure of the diploid Miscanthus sinensis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvVahtro%3D&md5=eabd877ac027f8f9fe55653bb58b1c8cCAS | 22439001PubMed |

Nishiwaki A, Mizuguti A, Kuwabara S, Toma Y, Ishigaki G, Miyashita T, Yamada T, Matuura H, Yamaguchi S, Rayburn AL, Akashi R, Stewart JR (2011) Discovery of natural Miscanthus (Poaceae) triploid plants in sympatric populations of Miscanthus sacchariflorus and Miscanthus sinensis in southern Japan. American Journal of Botany 98, 154–159.
Discovery of natural Miscanthus (Poaceae) triploid plants in sympatric populations of Miscanthus sacchariflorus and Miscanthus sinensis in southern Japan.Crossref | GoogleScholarGoogle Scholar | 21613094PubMed |

Novaes E, Boaventura-Novaes C, Coelho A, Kirst M (2011) The transcriptome of a Populus pseudo-backcross identifies genes and pathways co-expressed with monolignol biosynthesis. BMC Proceedings 5, 119.

Pinçon G, Maury S, Hoffman L, Geoffroy P, Lapierre C, Pollet B, Legrand M (2001) Repression of O-methyltransferase genes in transgenic tobacco affects lignin synthesis and plant growth. Phytochemistry 57, 1167–1176.
Repression of O-methyltransferase genes in transgenic tobacco affects lignin synthesis and plant growth.Crossref | GoogleScholarGoogle Scholar | 11430989PubMed |

Saathoff AJ, Sarath G, Chow EK, Dien BS, Tobias CM (2011) Downregulation of cinnamyl-alcohol dehydrogenase in switchgrass by RNA silencing results in enhanced glucose release after cellulase treatment. PLoS ONE 6, e16416
Downregulation of cinnamyl-alcohol dehydrogenase in switchgrass by RNA silencing results in enhanced glucose release after cellulase treatment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhslyit7c%3D&md5=cb9cfb4c8ac01daae9d2176031d6c14eCAS | 21298014PubMed |

Saballos A, Ejeta G, Sanchez E, Kang C, Vermerris W (2008) A genomewide analysis of the cinnamyl alcohol dehydrogenase family in sorghum [Sorghum bicolor (L.) Moench] identifies SbCAD2 as the brown midrib6 gene. Genetics 181, 783–795.
A genomewide analysis of the cinnamyl alcohol dehydrogenase family in sorghum [Sorghum bicolor (L.) Moench] identifies SbCAD2 as the brown midrib6 gene.Crossref | GoogleScholarGoogle Scholar | 19087955PubMed |

Saballos A, Sattler SE, Sanchez E, Foster TP, Xin Z, Kang C, Pedersen JF, Vermerris W (2012) Brown midrib2 (Bmr2) encodes the major 4-coumarate:coenzyme A ligase involved in lignin biosynthesis in sorghum (Sorghum bicolor (L.) Moench). The Plant Journal 70, 818–830.
Brown midrib2 (Bmr2) encodes the major 4-coumarate:coenzyme A ligase involved in lignin biosynthesis in sorghum (Sorghum bicolor (L.) Moench).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xps12qsLc%3D&md5=647c678b089bec8a68793b72041ed811CAS | 22313236PubMed |

Sacks EJ, Juvik JA, Lin Q, Stewart JR, Yamada T (2013) The gene pool of Miscanthus species and its improvement. In ‘Genomics of the Saccharinae’. (Ed. AH Paterson) pp. 73–101. (Springer: New York)

Saitou N, Nei M (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 402–425.

Sattler SE, Saathoff AJ, Haas EJ, Palmer NA, Funnell-Harris DL, Sarath G, Pedersen JF (2009) A nonsense mutation in a cinnamyl alcohol dehydrogenase gene is responsible for the sorghum brown midrib6 phenotype. Plant Physiology 150, 584–595.
A nonsense mutation in a cinnamyl alcohol dehydrogenase gene is responsible for the sorghum brown midrib6 phenotype.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsleit78%3D&md5=9f655319fbe8ffae035d08d6db77cc6bCAS | 19363091PubMed |

Schatz MC, Witkowski J, McCombie WR (2012) Current challenges in de novo plant genome sequencing and assembly. Genome Biology 13, 243
Current challenges in de novo plant genome sequencing and assembly.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptV2jur4%3D&md5=e9eea5be823b367dac08d09c6f3e50d4CAS | 22546054PubMed |

Slavov G, Allison G, Bosch M (2013) Advances in the genetic dissection of plant cell walls: tools and resources available in Miscanthus. Frontiers in Plant Science 4, 217
Advances in the genetic dissection of plant cell walls: tools and resources available in Miscanthus.Crossref | GoogleScholarGoogle Scholar | 23847628PubMed |

Slavov GT, Nipper R, Robson P, Farrar K, Allison GG, Bosch M, Clifton-Brown JC, Donnison IS, Jensen E (2014) Genome-wide association studies and prediction of 17 traits related to phenology, biomass and cell wall composition in the energy grass Miscanthus sinensis. New Phytologist 201, 1227–1239.
Genome-wide association studies and prediction of 17 traits related to phenology, biomass and cell wall composition in the energy grass Miscanthus sinensis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVegs7k%3D&md5=75b75943ad98b8057d8237dcc1e3759aCAS | 24308815PubMed |

Stewart JR, Toma YO, Fernandez FG, Nishiwaki A, Yamada T, Bollero GN (2009) The ecology and agronomy of Miscanthus sinensis a species important to bioenergy crop development in its native range in Japan: a review. Global Change Biology Bioenergy 1, 126–153.
The ecology and agronomy of Miscanthus sinensis a species important to bioenergy crop development in its native range in Japan: a review.Crossref | GoogleScholarGoogle Scholar |

Swaminathan K, Alabady MS, Varala K, De Paoli E, Ho I, Rokhsar DS, Arumuganathan AK, Ming R, Green PJ, Meyers BC, Moose SP, Hudson ME (2010) Genomic and small RNA sequencing of Miscanthus × giganteus shows the utility of sorghum as a reference genome sequence for Andropogoneae grasses. Genome Biology 11, R12
Genomic and small RNA sequencing of Miscanthus × giganteus shows the utility of sorghum as a reference genome sequence for Andropogoneae grasses.Crossref | GoogleScholarGoogle Scholar | 20128909PubMed |

Swaminathan K, Chae WB, Mitros T, Varala K, Xie L, Barling A, Glowacka K, Hall M, Jezowski S, Ming R, Hudson M, Juvik JA, Rokhsar DS, Moose SP (2012) A framework genetic map for Miscanthus sinensis from RNAseq-based markers shows recent tetraploidy. BMC Genomics 13, 142
A framework genetic map for Miscanthus sinensis from RNAseq-based markers shows recent tetraploidy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xot12rt7o%3D&md5=c9e601b5bde7814ee28cc7679a84d459CAS | 22524439PubMed |

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 2731–2739.
MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1eiu73K&md5=2fa82aa9550085713e330de58c86ef85CAS | 21546353PubMed |

Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Lignin biosynthesis and structure. Plant Physiology 153, 895–905.
Lignin biosynthesis and structure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpsFejs7o%3D&md5=0df387ac40dc2133c1c83ee7dd48608dCAS | 20472751PubMed |

Vignols F, Rigau J, Torres MA, Capellades M, Puigdomenech P (1995) The brown midrib3 (bm3) mutation in maize occurs in the gene encoding caffeic acid O-methyltransferase. The Plant Cell 7, 407–416.
The brown midrib3 (bm3) mutation in maize occurs in the gene encoding caffeic acid O-methyltransferase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlt1yhsrs%3D&md5=c93adbf8603770e8751b5f5adb56ac15CAS | 7773015PubMed |

Wong MML, Cannon CH, Wickneswari R (2011) Identification of lignin genes and regulatory sequences involved in secondary cell wall formation in Acacia auriculiformis and Acacia mangium via de novo transcriptome sequencing. BMC Genomics 12, 342
Identification of lignin genes and regulatory sequences involved in secondary cell wall formation in Acacia auriculiformis and Acacia mangium via de novo transcriptome sequencing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsFChtrw%3D&md5=cf3a2f3ec78878325a962f75d696e5aeCAS |

Xu B, Sathisuksanoh N, Tang Y, Udvardi MK, Zhang JY, Shen Z, Balota M, Harich K, Zhang PYH, Zhao B (2012) Overexpression of AtLOV1 in switchgrass alters plant architecture, lignin content, and flowering time. PLoS ONE 7, e47399
Overexpression of AtLOV1 in switchgrass alters plant architecture, lignin content, and flowering time.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmtVSltg%3D%3D&md5=4477c35a6fcad0f2d9af94168a7bcfaeCAS | 23300513PubMed |

Yu CY, Kim HS, Rayburn AL, Widholm JM, Juvik JA (2009) Chromosome doubling of the bioenergy crop, Miscanthus × giganteus. Global Change Biology Bioenergy 1, 404–412.
Chromosome doubling of the bioenergy crop, Miscanthus × giganteus.Crossref | GoogleScholarGoogle Scholar |

Zhao Q, Tobimatsu Y, Zhou P, Pattathil S, Gallego-Giraldo L, Fu C, Jackson LA, Hahn MG, Kim H, Chen F, Ralph J, Dixon RA (2013) Loss of function of cinnamyl alcohol dehydrogenase 1 leads to unconventional lignin and a temperature-sensitive growth defect in Medicago truncatula. Proceedings of the National Academy of Sciences of the United States of America 110, 13 660–13 665.
Loss of function of cinnamyl alcohol dehydrogenase 1 leads to unconventional lignin and a temperature-sensitive growth defect in Medicago truncatula.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlCrtbnI&md5=45320671bcbb7eb3b03eb38ccdef32a5CAS |