Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

Phylogenetic analyses of Fusarium graminearum strains from cereals in Italy, and characterisation of their molecular and chemical chemotypes

S. Somma A , A. L. Petruzzella A B D , A. F. Logrieco A , G. Meca C , O. S. Cacciola D and A. Moretti A E
+ Author Affiliations
- Author Affiliations

A Institute of Sciences of Food Production – CNR, via Amendola 122/O, 70126, Bari, Italy.

B Dipartimento di Scienze Entomologiche, Fitopatologiche, Microbiologiche Agrarie e Zootecniche, UNIPA, Palermo, Italy.

C Laboratory of Food Chemistry and Toxicology, University of Valencia, Burjassot, Spain.

D Department of Agri-food and Environmental Systems Management, University of Catania, Italy.

E Corresponding author. Email: antonio.moretti@ispa.cnr.it

Crop and Pasture Science 65(1) 52-60 https://doi.org/10.1071/CP13314
Submitted: 6 September 2013  Accepted: 29 October 2013   Published: 6 January 2014

Abstract

The Fusarium graminearum species complex (FGSC) is a pathogen of durum wheat and other cereals worldwide. The complex consists of at least 15 species that can produce various mycotoxins, including trichothecenes, associated with human and animals toxicoses. In particular, deoxynivalenol (DON), nivalenol (NIV) and their different acetylated derivatives can be produced by the different chemotypes of the complex. In this study, 90 strains, isolated mainly from wheat in Italy and belonging to the FGSC, were assessed for their phylogeny and their chemotype and trichothecene genotype. Almost all strains of the FGSC belonged to F. graminearum sensu stricto, whereas two strains were F. cortaderiae. On the other hand, all three chemotypes, 3ADON, 15ADON and NIV, occurred; 15ADON was the most common molecular chemotype. The data show that the species composition of the Italian FGSC is homogeneous, whereas wide chemotype variability can occur within F. graminearum sensu stricto.

Additional keywords: chemotype, F. graminearum complex, Italy, phylogenetic analysis.


References

Abramson D, Clear RM, Gaba D, Smith DM, Patrick SK, Saydak D (2001) Trichothecene and moniliformin production by Fusarium species from western Canadian wheat. Journal of Food Protection 64, 1220–1225.

Boutigny A-L, Ward TJ, Van Coller GJ, Flett B, Lamprecht SC, O’Donnell K, Viljoen A (2011) Analysis of the Fusarium graminearum species complex from wheat, barley, and maize in South Africa provides evidence of species-specific differences in host preference. Fungal Genetics and Biology 48, 914–920.
Analysis of the Fusarium graminearum species complex from wheat, barley, and maize in South Africa provides evidence of species-specific differences in host preference.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpt1yjtrc%3D&md5=89be75749d918bfa9c94787cfe92b967CAS | 21601644PubMed |

Brown DW, Proctor RH, Dyer RB, Plattner RD (2003) Characterization of a Fusarium 2-gene cluster involved in trichothecene C-8 modification. Journal of Agricultural and Food Chemistry 51, 7936–7944.
Characterization of a Fusarium 2-gene cluster involved in trichothecene C-8 modification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXps1SmsLs%3D&md5=a58c61f7e816ff4b6a8ebefeb851413aCAS | 14690377PubMed |

Brown DW, Dyer JM, McCormick SP, Kendra DF, Plattner RD (2004) Functional demarcation of the Fusarium core trichothecene gene cluster. Fungal Genetics and Biology 41, 454–462.
Functional demarcation of the Fusarium core trichothecene gene cluster.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhslenu7c%3D&md5=79d111f2af215c3e3e2603f75ee0b629CAS | 14998528PubMed |

Desjardins AE (2006) ‘Fusarium mycotoxins: Chemistry, genetics and biology.’ (American Phytopathological Society Press: St. Paul, MN)

Desjardins AE (2008) Natural product chemistry meets genetics: when is a genotype a chemotype? Journal of Agricultural and Food Chemistry 56, 7587–7592.
Natural product chemistry meets genetics: when is a genotype a chemotype?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXps1Kntrw%3D&md5=6ffb2beec366c083d4b396fcc7063d2dCAS | 18690691PubMed |

Desjardins AE, Proctor RH (2011) Genetic diversity and trichothecene chemotypes of the Fusarium graminearum clade isolated from maize in Nepal and identification of a putative new lineage. Fungal Biology 115, 38–48.
Genetic diversity and trichothecene chemotypes of the Fusarium graminearum clade isolated from maize in Nepal and identification of a putative new lineage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsVCisg%3D%3D&md5=922940475548af4a93afde7f480aa0b2CAS | 21215953PubMed |

Desjardins AE, Jarosz AM, Plattner RD, Alexander NJ, Brown DW, Jurgenson JE (2004) Patterns of trichothecene production, genetic variability, and virulence to wheat of Fusarium graminearum from small holder farms in Nepal. Journal of Agricultural and Food Chemistry 52, 6341–6346.
Patterns of trichothecene production, genetic variability, and virulence to wheat of Fusarium graminearum from small holder farms in Nepal.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntVehs7c%3D&md5=71c38f7f76154b572c78bab2af49b597CAS | 15453711PubMed |

Gagkaeva T, Yli-Mattila T (2004) Genetic diversity of populations of Fusarium graminearum in Europe and Asia. European Journal of Plant Pathology 110, 551–562.
Genetic diversity of populations of Fusarium graminearum in Europe and Asia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltVWrt7g%3D&md5=70e294594515ec56babb333d72180eafCAS |

Gale LR, Harrison SA, Ward TJ, O’Donnell K, Milus EA, Gale SW, Kistler HC (2011) Nivalenol-type populations of Fusarium graminearum and F. asiaticum are prevalent on wheat in southern Louisiana. Phytopathology 101, 124–134.
Nivalenol-type populations of Fusarium graminearum and F. asiaticum are prevalent on wheat in southern Louisiana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnvV2mtA%3D%3D&md5=98c68f935309971dd498404b5b4d262aCAS | 20822434PubMed |

Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology 61, 1323–1330.

Grovey JF (2007) The trichothecenes and their biosynthesis. Fortschritte der Chemie Organischer Naturstoffe 88, 63–130.
The trichothecenes and their biosynthesis.Crossref | GoogleScholarGoogle Scholar |

Jennings P, Coates ME, Walsh K, Turner JA, Nicholson P (2004) Determination of deoxynivalenol- and nivalenol-producing chemotypes of Fusarium graminearum isolates from wheat crops in England and Wales. Plant Pathology 53, 643–652.
Determination of deoxynivalenol- and nivalenol-producing chemotypes of Fusarium graminearum isolates from wheat crops in England and Wales.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVSgtL%2FF&md5=5c7b5b85b2bf25d88e0530f0e80243cfCAS |

Karugia GW, Suga H, Gale LR, Nakajima T, Tomimura K, Hyakumachi M (2009) Population structure of the Fusarium graminearum species complex from a single Japanese wheat field sampled in two consecutive years. Plant Disease 93, 170–174.
Population structure of the Fusarium graminearum species complex from a single Japanese wheat field sampled in two consecutive years.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitVamt74%3D&md5=5fe6d59a912f97134c5bf2ef6368392bCAS |

Kimura M, Matsumoto G, Shingu Y, Yoneyama K, Yamaguchi I (1998) The mystery of the trichothecene 3-O-acetyltransferase gene analysis of the region around Tri101 and characterization of its homologue from Fusarium sporotrichioides. FEBS Letters 435, 163–168.
The mystery of the trichothecene 3-O-acetyltransferase gene analysis of the region around Tri101 and characterization of its homologue from Fusarium sporotrichioides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmt1emt7Y%3D&md5=17d68bae02bc3748b743d5eb8317b982CAS | 9762900PubMed |

Láday M, Juhász Á, Mulè G, Moretti A, Szécsi Á, Logrieco A (2004) Mitochondria DNA diversity and lineage determination of European isolates of Fusarium graminearum (Gibberella zeae). European Journal of Plant Pathology 110, 545–550.
Mitochondria DNA diversity and lineage determination of European isolates of Fusarium graminearum (Gibberella zeae).Crossref | GoogleScholarGoogle Scholar |

Lee T, Han Y-K, Kim K-H, Yun S-H, Lee Y-W (2002) Tri13 and Tri7 determine deoxynivalenol- and nivalenol-producing chemotypes of Gibberella zeae. Applied and Environmental Microbiology 68, 2148–2154.
Tri13 and Tri7 determine deoxynivalenol- and nivalenol-producing chemotypes of Gibberella zeae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjsFGqsbo%3D&md5=473118109afa73145ad4fc517f073a38CAS | 11976083PubMed |

Lee YW, Jeon JJ, Kim H, Jang IY, Kim HS, Yun SH, Kim JG (2004) Lineage composition and trichothecene production of Gibberella zeae population in Korea. In ‘New horizons of mycotoxicology for assuring food safety. Proceedings of the International Symposium of Mycotoxicology’. (Ed. T Yoshizawa) pp. 117–122 (Bikohsha Co.: Takamatsu, Japan)

Lee S-H, Lee J, Nam YJ, Lee S, Ryu J-G, Lee T (2010) Population structure of Fusarium graminearum from maize and rice in 2009 in Korea. Plant Pathology 26, 321–327.
Population structure of Fusarium graminearum from maize and rice in 2009 in Korea.Crossref | GoogleScholarGoogle Scholar |

McCormick SP, Alexander NJ, Proctor RH (2006) Heterologous expression of two trichothecene P450 genes in Fusarium verticillioides. Canadian Journal of Microbiology 52, 220–226.
Heterologous expression of two trichothecene P450 genes in Fusarium verticillioides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktV2iurk%3D&md5=a655759605c7b2205c384ad2bce5b0b6CAS | 16604118PubMed |

Monds RD, Cromey MG, Lauren DR, Menna M, Marshall J (2005) Fusarium graminearum, F. cortaderiae and F. pseudograminearum in New Zealand: molecular phylogenetic analysis, mycotoxin chemotypes and co-existence of species. Mycological Research 109, 410–420.
Fusarium graminearum, F. cortaderiae and F. pseudograminearum in New Zealand: molecular phylogenetic analysis, mycotoxin chemotypes and co-existence of species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXislCntrk%3D&md5=d9c4ab89b304237b6b6c71f5ce2da62bCAS | 15912928PubMed |

O’Donnell K, Cigelnik E (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Molecular Phylogenetics and Evolution 7, 103–116.
Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhtFGgsr8%3D&md5=864aad32f7524dc0460b2b743af469d7CAS | 9007025PubMed |

O’Donnell K, Kistler HC, Tacke BK, Casper HH (2000) Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proceedings of the National Academy of Sciences of the United States of America 97, 7905–7910.
Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkvFCnuro%3D&md5=8f6212743972f25fcb9787d2483e5414CAS | 10869425PubMed |

O’Donnell K, Ward TJ, Geiser DM, Kistler HC, Aoki T (2004) Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade. Fungal Genetics and Biology 41, 600–623.
Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjs1Cis78%3D&md5=6b63167c248e84700648fd33e7b542eaCAS | 15121083PubMed |

O’Donnell K, Ward TJ, Aberra D, Kistler HC, Aoki T, Orwig N, Kimura M, Bjørnstad Å, Klemsdal SS (2008) Multilocus genotyping and molecular phylogenetics resolve a novel head blight pathogen within the Fusarium graminearum species complex from Ethiopia. Fungal Genetics and Biology 45, 1514–1522.
Multilocus genotyping and molecular phylogenetics resolve a novel head blight pathogen within the Fusarium graminearum species complex from Ethiopia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlGhurfP&md5=5b767fe683e1b2fd22ddc39654f86131CAS | 18824240PubMed |

Prodi A, Tonti S, Nipoti P, Pancaldi D, Pisi A (2009) Identification of deoxynivalenol and nivalenol producing chemotypes of Fusarium graminearum isolates from durum wheat in a restricted area of Northern Italy. Journal of Plant Pathology 91, 727–731.

Prodi A, Purahong W, Tonti S, Salomoni D, Nipoti P, Covarelli L, Pisi A (2011) Difference in chemotype composition of Fusarium graminearum populations isolated from durum wheat in adjacent areas separated by the Apennines in Northern-Central Italy. The Plant Pathology Journal 27, 354–359.
Difference in chemotype composition of Fusarium graminearum populations isolated from durum wheat in adjacent areas separated by the Apennines in Northern-Central Italy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVelt7w%3D&md5=11c5868f380221f41db0407d16cc3743CAS |

Qu B, Li HP, Zhang JB, Huang T, Carter J, Liao YC, Nicholson P (2008) Comparison of genetic diversity and pathogenicity of fusarium head blight pathogens from China and Europe by SSCP and seedling assays on wheat. Plant Pathology 57, 642–651.
Comparison of genetic diversity and pathogenicity of fusarium head blight pathogens from China and Europe by SSCP and seedling assays on wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVKnsrrO&md5=f721a1145e5b85b32c535339311025b8CAS |

Quarta A, Mita G, Haidukowski M, Logrieco A, Mulè J, Visconti A (2006) Multiplex PCR assay for the identification of nivalenol, 3- and 15-acetyl-deoxynivalenol chemotypes in Fusarium. Microbiology Letters 259, 7–13.
Multiplex PCR assay for the identification of nivalenol, 3- and 15-acetyl-deoxynivalenol chemotypes in Fusarium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xlt1Cjtrw%3D&md5=0bf52e4f49587f1124010c5bc786f4e8CAS |

Rasmussen PH, Ghorbani F, Berg T (2003) Deoxynivalenol and other Fusarium toxins in wheat and rye flours on the Danish market. Food Additives and Contaminants 20, 396–404.
Deoxynivalenol and other Fusarium toxins in wheat and rye flours on the Danish market.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjvVCltbY%3D&md5=f1caffd24a075a70ebc9285cdc924dddCAS | 12775483PubMed |

Rubert J, Dzuman Z, Vaclavikova M, Zachariasova M, Soler C, Hajslova J (2012a) Analysis of mycotoxins in barley using ultra high liquid chromatography high resolution mass spectrometry: comparison of efficiency and efficacy of different extraction procedures. Talanta 99, 712–719.
Analysis of mycotoxins in barley using ultra high liquid chromatography high resolution mass spectrometry: comparison of efficiency and efficacy of different extraction procedures.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlehtLnP&md5=7605009f18b0abec0f52a49ecb61ddc4CAS | 22967615PubMed |

Rubert J, James KJ, Mañes J, Soler C (2012b) Applicability of hybrid linear iontrap-high resolution mass spectrometry and quadrupole-linear ion trap-mass spectrometry for mycotoxin analysis in baby food. Journal of Chromatography. A 1223, 84–92.
Applicability of hybrid linear iontrap-high resolution mass spectrometry and quadrupole-linear ion trap-mass spectrometry for mycotoxin analysis in baby food.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptVShtA%3D%3D&md5=33c713d7a726a3330d4df29eebb223e7CAS | 22226561PubMed |

Sarver BAJ, Ward TJ, Gale LR, Broz K, Kistler HC, Aoki T, Nicholson P, Carter J, O’Donnell K (2011) Novel Fusarium head blight pathogens from Nepal and Louisiana revealed by multilocus genealogical concordance. Fungal Genetics and Biology 48, 1096–1107.
Novel Fusarium head blight pathogens from Nepal and Louisiana revealed by multilocus genealogical concordance.Crossref | GoogleScholarGoogle Scholar |

Schmale DG, Wood-Jones AK, Cowger C, Bergstrom GC, Arellano C (2011) Trichothecene genotypes of Gibberella zeae from winter wheat fields in the eastern USA. Plant Pathology 60, 909–917.
Trichothecene genotypes of Gibberella zeae from winter wheat fields in the eastern USA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlSks7fK&md5=41bb118d5d22bd5e1c8503457df51d5dCAS |

Starkey DE, Ward TJ, Aoki T, Gale LR, Kistler HC, Geiser DM, Suga H, Tòth B, Varga J, O’Donnell K (2007) Global molecular surveillance reveals novel Fusarium head blight species and trichothecene toxin diversity. Fungal Genetics and Biology 44, 1191–1204.
Global molecular surveillance reveals novel Fusarium head blight species and trichothecene toxin diversity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFKhsLvF&md5=a8b759fb07b484d82941581d281989f6CAS | 17451976PubMed |

Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10, 512–526.

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 2731–2739.
MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1eiu73K&md5=2fa82aa9550085713e330de58c86ef85CAS | 21546353PubMed |

Thrane U, Adler A, Clasen P-E, Galvano F, Langseth W, Lew H, Logrieco A, Nielsen KF, Ritieni A (2004) Diversity in metabolite production by Fusarium langsethiae, Fusarium poae, and F. sporotrichioides. International Journal of Food Microbiology 95, 257–266.
Diversity in metabolite production by Fusarium langsethiae, Fusarium poae, and F. sporotrichioides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntFWktbs%3D&md5=4cff47672b9940644e0a2700ba4a6319CAS | 15337591PubMed |

Tóth B, Mesterházy Á, Horváth Z, Bartók T, Varga M, Varga J (2005) Genetic variability of central European isolates of the Fusarium graminearum species complex. European Journal of Plant Pathology 113, 35–45.
Genetic variability of central European isolates of the Fusarium graminearum species complex.Crossref | GoogleScholarGoogle Scholar |

van der Fels-Klerx HJ, Stratakou I (2010) T-2 toxin and HT-2 toxin in grain and grain-based commodities in Europe—occurrence, factors affecting occurrence, co-occurrence and toxicological effects. World Mycotoxin Journal 3, 349–367.
T-2 toxin and HT-2 toxin in grain and grain-based commodities in Europe—occurrence, factors affecting occurrence, co-occurrence and toxicological effects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlvVyq&md5=8afdef38b7d422b8c10b6f42149da58fCAS |

Waalwijk C, Kastelein P, de Vries I, Kere’nyi Z, van der Lee T, Hesselink T, Köhl J, Kema G (2003) Major changes in Fusarium spp. in wheat in the Netherlands. European Journal of Plant Pathology 109, 743–754.
Major changes in Fusarium spp. in wheat in the Netherlands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnslSgtL0%3D&md5=8424f9d1466a4cb33f7ec125f0246ca7CAS |

Wang J-H, Li H-P, Qu B, Zhang J-B, Huang T, Chen F-F, Liao Y-C (2008) Development of a generic PCR detection of 3-acetyldeoxynivalenol-, 15-acetyldeoxynivalenol- and nivalenol-chemotypes of Fusarium graminearum clade. International Journal of Molecular Sciences 9, 2495–2504.
Development of a generic PCR detection of 3-acetyldeoxynivalenol-, 15-acetyldeoxynivalenol- and nivalenol-chemotypes of Fusarium graminearum clade.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnslCltA%3D%3D&md5=7c9da0e62599fae21bb2a25d1d78c948CAS | 19330088PubMed |

Ward TJ, Bielawski JP, Kistler HC, Sullivan E, O’Donnell K (2002) Ancestral polymorphism and adaptive evolution in the trichothecene mycotoxin gene cluster of phytopathogenic Fusarium. Proceedings of the National Academy of Sciences of the United States of America 99, 9278–9283.
Ancestral polymorphism and adaptive evolution in the trichothecene mycotoxin gene cluster of phytopathogenic Fusarium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsVGgsLo%3D&md5=68583f68959bd8ebcf0ad393b790b3faCAS | 12080147PubMed |

Ward TJ, Clear RM, Rooney AP, O’Donnell K, Gaba D, Patrick S, Starkey DE, Gilbert J, Geiser DM, Nowicki TW (2008) An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fusarium graminearum in North America. Fungal Genetics and Biology 45, 473–484.
An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fusarium graminearum in North America.Crossref | GoogleScholarGoogle Scholar | 18035565PubMed |

Xu XM, Nicholson P, Thomsett MA, Simpson D, Cooke BM, Doohan FM, Brennan J, Monaghan S, Moretti A, Mulè G, Homok L, Beki E, Tatnell J, Ritieni A, Edwards SG (2008) Relationship between the fungal complex causing Fusarium head blight of wheat and environmental conditions. Phytopathology 98, 69–78.
Relationship between the fungal complex causing Fusarium head blight of wheat and environmental conditions.Crossref | GoogleScholarGoogle Scholar | 18943240PubMed |

Yli-Mattila T (2010) Ecology and evolution of toxigenic Fusarium species in cereals in northern Europe and Asia. Journal of Plant Pathology 92, 7–18.

Yli-Mattila T, Paavanen-Huhtala S, Parikka P, Hietaniemi V, Jestoi M, Gagkaeva T, Sarlin T, Haikara A, Laaksonen S, Rizzo A (2008) Real-time PCR detection and quantification of Fusarium poae, F. graminearum, F. sporotrichioides and F. langsethiae as compared to mycotoxin production in grains in Finland and Russia. Archives of Phytopathology and Plant Protection 41, 243–260.
Real-time PCR detection and quantification of Fusarium poae, F. graminearum, F. sporotrichioides and F. langsethiae as compared to mycotoxin production in grains in Finland and Russia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltlKjtrY%3D&md5=7eba276f7b56ca71e20da167b2f06b6cCAS |

Yli-Mattila T, Gagkaeva T, Ward TJ, Aoki T, Kistler HC, O’Donnell K (2009) A novel Asian clade within the Fusarium graminearum species complex includes a newly discovered cereal head blight pathogen from the Far East of Russia. Mycologia 101, 841–852.
A novel Asian clade within the Fusarium graminearum species complex includes a newly discovered cereal head blight pathogen from the Far East of Russia.Crossref | GoogleScholarGoogle Scholar | 19927749PubMed |

Zhang H, Van der Lee T, Waalwijk C, Chen W, Xu J, Xu J, Zhang Y, Feng J (2012) Population analysis of the Fusarium graminearum species complex from wheat in China show a shift to more aggressive isolates. PLoS ONE 7, e31722
Population analysis of the Fusarium graminearum species complex from wheat in China show a shift to more aggressive isolates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjt1Kqt74%3D&md5=0b169c4d9a05cbd6befa7a79d4de908dCAS | 22363714PubMed |