Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

Effects of infection with the viral complex alfalfa dwarf disease on productivity traits and coumestrol production in alfalfa plants

Mercedes P. Silva A , Daniel H. Basigalup A , Stella Maris Chiacchiera B , Verónica Trucco C D , Fabián Giolitti C D , Eva Mamani A , Carolina del Pilar Díaz E and Milena E. Manzur https://orcid.org/0000-0002-0224-0441 F G *
+ Author Affiliations
- Author Affiliations

A Estación experimental Agropecuaria – Instituto Nacional de Tecnología Agropecuaria, Ruta Nacional N°9 km 636, Manfredi, Córdoba CP5988, Argentina.

B Instituto de Micología y Micotoxicología (IMICO), Ruta Nacional 36. Km. 601, Río Cuarto, Córdoba CPX5804BYA, Argentina.

C Instituto Nacional de Tecnología Agropecuaria (INTA) – Instituto de Patología Vegetal (IPAVE), Córdoba, Argentina.

D Consejo Nacional de Investigaciones Científicas y Técnicas, Unidad de Fitopatología y Modelización Agrícola (CONICET-UFyMA), Av. 11 de septiembre 4755, Córdoba X5014MGO, Argentina.

E Pi Strategy and Consulting, Sede Córdoba, Argentina.

F Instituto de Investigaciones Biotecnológicas-UNSAM-CONICET, Av. 25 de mayo y Francia, San Martín CPA, Buenos Aires B1650HMP, Argentina.

G Departamento de Biología Aplicada y Alimentos, Cátedra de Fisiología Vegetal, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, Buenos Aires 1417DSE, Argentina.

* Correspondence to: mmanzur@agro.uba.ar

Handling Editor: Megan Ryan

Crop & Pasture Science 75, CP23143 https://doi.org/10.1071/CP23143
Submitted: 21 September 2022  Accepted: 12 September 2023  Published: 2 October 2023

© 2024 The Author(s) (or their employer(s)). Published by CSIRO Publishing

Abstract

Context

Viral infections generate yield losses in alfalfa due to the impact on growth, seed production, impaired nitrogen fixation and fungal disease susceptibility, but also stimulate production of coumestrol, which can exhibit oestrogenic activity in livestock and human.

Aims

We investigated the change in coumestrol content and its relationship with morphological and productivity traits in alfalfa plants infected with alfalfa viral complex.

Methods

Seven genotypes from cultivar Monarca SP-INTA and six of Traful PV-INTA were used. Plants were cloned and treated as non-infected and infected with alfalfa viral complex (alfalfa dwarf disease). Productivity and morphological traits were assessed. Disease symptoms were used to estimate the genotype severity index (GSI, %), coumestrol content was determined by high pressure liquid chromatography.

Key results

Viral infection reduced internode distance (iD) for the majority of Monarca genotypes, whereas in Traful one was affected, generating dwarfism. The iD reduction positively correlated with GSI only in Monarca genotypes. Coumestrol content varied between genotypes of each of the two cultivars. Monarca genotypes ranged between 350 and 1140 (infected and non-infected) ppm, and Traful genotypes ranged between 0 and 942 (infected and non-infected) ppm. However, viral infection promoted coumestrol increase in three genotypes only.

Conclusions

All Monarca genotypes studied seem to be more sensitive to viral infections than those of Traful, as GSI demonstrated. Independently of cultivar, coumestrol content increased for three genotypes. High coumestrol content was correlated with low GSI.

Implications

The knowledge of genotype response to viral infections would be useful for breeders to select superior genotypes as well as to originate new cultivars either as forage or as natural sources of phytoestrogens.

Keywords: alfalfa genotypes, alfalfa leaf curl virus, alfalfa mosaic virus, Medicago sativa, oestrogenic activity, phytoestrogen, productivity traits, viral infection.

References

Alexander HM, Mauck KE, Whitfield AE, Garrett KA, Malmstrom CM (2014) Plant-virus interactions and the agro-ecological interface. European Journal of Plant Pathology 138, 529-547.
| Crossref | Google Scholar |

Annicchiarico P (2015) Alfalfa forage yield and leaf/stem ratio: narrow-sense heritability, genetic correlation, and parent selection procedures. Euphytica 205, 409-420.
| Crossref | Google Scholar |

Annicchiarico P, Nazzicari N, Li X, Wei Y, Pecetti L, Brummer EC (2015) Accuracy of genomic selection for alfalfa biomass yield in different reference populations. BMC Genomics 16, 1020.
| Crossref | Google Scholar |

Bailiss KW, Ollennu LAA (1986) Effect of alfalfa mosaic virus isolates on forage yield of lucerne (Medicago sativa) in Britain. Plant Pathology 35, 162-168.
| Crossref | Google Scholar |

Barbetti MJ (2007) Resistance in annual Medicago spp. to Phoma medicaginis and Leptosphaerulina trifolii and its relationship to induced production of a phytoestrogen. Plant Disease 91, 239-244.
| Crossref | Google Scholar | PubMed |

Barbetti MJ, You M, Jones RAC (2020) Medicago truncatula and other annual Medicago spp.: interactions with root and foliar fungal, oomycete, and viral pathogens, Chapter 5.2.1.1. In ‘The model legume Medicago truncatula’. (Eds FJ de Bruijn, DY Liu) pp. 293–306. (Wiley: Chichester, UK)

Basigalup DH (2007) Mejoramiento Genético y desarrollo de variedades. In ‘El cultivo de la alfalfa en la Argentina’. (Ed. DH Basigalup) pp 83–95. (Ediciones INTA: Buenos Aires, Argentina) [In Spanish]

Basigalup DH (2022) Panorama actual del cultivo de alfalfa en Argentina. In ‘Investigación, producción e industrialización de la alfalfa en Argentina’. (Ed. DH Basigalup) pp. 1–35. (Ediciones INTA: Buenos Aires, Argentina) [In Spanish]

Bejerman N, Nome C, Giolitti F, Kitajima E, de Breuil S, Pérez Férnandez J, Basigalup D, Cornacchione M, Lenardon S (2011) First report of a rhabdovirus infecting alfalfa in Argentina. Plant Disease 95, 771.
| Crossref | Google Scholar | PubMed |

Bejerman N, Giolitti F, de Breuil S, Trucco V, Nome C, Lenardon S, Dietzgen RG (2015) Complete genome sequence and integrated protein localization and interaction map for alfalfa dwarf virus, which combines properties of both cytoplasmic and nuclear plant rhabdoviruses. Virology 483, 275-283.
| Crossref | Google Scholar | PubMed |

Bejerman N, Giolitti F, Trucco V, de Breuil S, Dietzgen RG, Lenardon S (2016) Complete genome sequence of a new enamovirus from Argentina infecting alfalfa plants showing dwarfism symptoms. Archives of Virology 161, 2029-2032.
| Crossref | Google Scholar | PubMed |

Bejerman N, Trucco V, de Breuil S, Pardina PR, Lenardon S, Giolitti F (2018) Genome characterization of an Argentinean isolate of alfalfa leaf curl virus. Archives of Virology 163, 799-803.
| Crossref | Google Scholar | PubMed |

Bejerman N, Debat H, Nome C, Cabrera-Mederos D, Trucco V, de Breuil S, Lenardon S, Giolitti F (2019) Redefining the medicago sativa alphapartitiviruses genome sequences. Virus Research 265, 156-161.
| Crossref | Google Scholar | PubMed |

Cooper JI, Jones AT (1983) Responses of plants to viruses: proposals for the use of terms. Phytopathology 73, 127-128.
| Crossref | Google Scholar |

Cooper I, Jones RAC (2006) Wild plants and viruses: under-investigated ecosystems. Advances in Virus Research 67, 1-47.
| Crossref | Google Scholar | PubMed |

Coutts BA, Jones RAC (2002) Temporal dynamics of spread of four viruses within mixed species perennial pastures. Annals of Applied Biology 140, 37-52.
| Crossref | Google Scholar |

Crill P, Hagedorn DJ, Hanson EW (1970) Incidence and effect of alfalfa mosaic virus on alfalfa. Phytopathology 60, 1432-1435.
| Crossref | Google Scholar |

Dall DJ, Randles JW, Francki RIB (1989) The effect of alfalfa mosaic virus on productivity of annual barrel medic, Medicago truncatula. Australian Journal of Agricultural Research 40, 807-815.
| Crossref | Google Scholar |

Davoodi Z, Bejerman N, Richet C, Filloux D, Kumari SG, Chatzivassiliou EK, Galzi S, Julian C, Samarfard S, Trucco V, Giolitti F, Fiallo-Olivé E, Navas-Castillo J, Asaad N, Moukahel AR, Hijazi J, Mghandef S, Heydarnejad J, Massumi H, Varsani A, Dietzgen RG, Harkins GW, Martin DP, Roumagnac P (2018) The Westward Journey of Alfalfa Leaf Curl Virus. Viruses 10, 542.
| Crossref | Google Scholar | PubMed |

Delgado Enguita I, Luna Calvo L (1992) Incidences of mosaic and enation viruses in selected alfalfa plants. Pastos 22, 85-92.
| Google Scholar |

Di Rienzo JA, Guzmán AW, Casanoves F (2002) A multiple-comparisons method based on the distribution of the root node distance of a binary tree. Journal of Agricultural, Biological, and Environmental Statistics 7, 129-142.
| Crossref | Google Scholar |

Di Rienzo JA, Casanoves F, Balzarin, MG, Gonzalez L, Tablada M, Robledo CW (2018) InfoStat versión 2018p. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. Available at http://www.infostat.com.ar

Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure from small quantities of fresh leaf tissue. Phytochemical Bulletin 19, 11-15.
| Google Scholar |

Fields RL, Barrell GK, Gash A, Zhao J, Moot DJ (2018) Alfalfa coumestrol content in response to development stage, fungi, aphids, and cultivar. Agronomy Journal 110, 910-921.
| Crossref | Google Scholar |

Foltin E (1959) Observations on bovine infertility in the Jordan Valley. Refuah Veterinarith 16, 193-138.
| Google Scholar |

Franke AA, Custer LJ, Cerna CM, Narala KK (1994) Quantitation of phytoestrogens in legumes by HPLC. Journal of Agricultural and Food Chemistry 42, 1905-1913.
| Crossref | Google Scholar |

Frosheiser FI (1969) Variable influence of alfalfa mosaic virus strains on growth and survival of alfalfa and on mechanical and aphid transmission. Phytopathology 59, 857-862.
| Google Scholar |

Hanson CH, Loper GM, Kohler GO, Bickoff EM, Taylor KW, Kehr WR, Stanford EH, Dudley JW, Pedersen MW, Sorensen EL, Carnahan HL, Wilsie CP (1965) Variation in coumestrol content of alfalfa as related to location, variety, cutting, year, stage of growth, and disease. USDA Technical Bulletin. 1333. United States Department of Agriculture, Economic Research Service.

Hiruki C, Miczynski KA (1987) Severe isolate of alfalfa mosaic virus and its impact on alfalfa cultivars grown in Alberta. Plant Disease 71, 1014-1018.
| Crossref | Google Scholar |

INTA-Informa (2010) Descubren una nueva enfermedad en alfalfa. Available at https://intainforma.inta.gob.ar/descubren-una-nueva-enfermedad-en-alfalfa [Accessed 29 October 2015]

Jones RAC (1992) Further studies on losses in productivity caused by infection of annual pasture legumes with three viruses. Australian Journal of Agricultural Research 43, 1229-1241.
| Crossref | Google Scholar |

Jones RAC (2022) Alteration of plant species mixtures by virus infection: managed pastures the forgotten dimension. Plant Pathology 71, 1255-1281.
| Crossref | Google Scholar |

Jones RAC, Ferris DG (2001) Virus infection stimulates phyto-oestrogen production in pasture legume plants growing in grazed swards. Annals of Applied Biology 138, 171-179.
| Crossref | Google Scholar |

Jones RAC, Nicholas DA (1992) Studies on alfalfa mosaic virus infection of burr medic (Medicago polymorpha) swards: seed-borne infection, persistence, spread and effects on productivity. Australian Journal of Agricultural Research 43, 697-715.
| Crossref | Google Scholar |

Jones RAC, Nicholas DA (1998) Impact of an insidious virus disease in the legume component on the species balance within self-regenerating annual pasture. The Journal of Agricultural Science 131, 155-170.
| Crossref | Google Scholar |

Kalu BA, Fick GW (1981) Quantifying morphological development of alfalfa for studies of herbage quality. Crop Science 21, 267-271.
| Crossref | Google Scholar |

Latham LJ, Jones RAC (2001) Alfalfa mosaic and pea seed-borne mosaic viruses in cool season crop, annual pasture, and forage legumes: susceptibility, sensitivity, and seed transmission. Australian Journal of Agricultural Research 52, 771-790.
| Crossref | Google Scholar |

Latham LJ, Jones RAC, McKirdy SJ (2001) Cucumber mosaic cucumovirus infection of cool-season crop, annual pasture, and forage legumes: susceptibility, sensitivity, and seed transmission. Australian Journal of Agricultural Research 52, 683-697.
| Crossref | Google Scholar |

Malmstrom CM, Stoner CJ, Brandenburg S, Newton LA (2006) Virus infection and grazing exert counteracting influences on survivorship of native bunchgrass seedlings competing with invasive exotics. Journal of Ecology 94, 264-275.
| Crossref | Google Scholar | PubMed |

Martin LM, Castilho MC, Silveira MI, Abreu JM (2006) Liquid chromatographic validation of a quantitation method for phytoestrogens, biochanin-A, coumestrol, daidzein, formononetin, and genistein, in lucerne. Journal of Liquid Chromatography & Related Technologies 29, 2875-2884.
| Crossref | Google Scholar |

McKirdy SJ, Jones RAC, Latham LJ, Coutts BA (2000) Bean yellow mosaic potyvirus infection of alternative annual pasture, forage, and cool season crop legumes: susceptibility, sensitivity, and seed transmission. Australian Journal of Agricultural Research 51, 325-345.
| Crossref | Google Scholar |

McLaughlin MR, Pederson GA, Evans RR, Ivy RL (1992) Virus diseases and stand decline in a white clover pasture. Plant Disease 76, 158-162.
| Crossref | Google Scholar |

Murkies AL, Wilcox G, Davis SR (1998) Clinical review 92: phytoestrogens. Journal of Clinical Endocrinology & Metabolism 83, 297-303.
| Crossref | Google Scholar |

Odorizzi AS, Cornacchione MV, Arolfo V, Basigalup DH, Mijoevich ML, Balzarini M (2017) Evaluación de la virosis del achaparramiento de la alfalfa (Medicago sativa L.) en dos ambientes contrastantes de Argentina. AgriScientia 34, 69-81 [In Spanish].
| Crossref | Google Scholar |

Ohki ST, Leps WT, Hiruki C (1986) Effects of alfalfa mosaic virus infection on factors associated with symbiotic N2 fixation in alfalfa. Canadian Journal of Plant Pathology 8, 277-281.
| Crossref | Google Scholar |

Oldfield JE, Fox CW, Bahn AV, Bickoff EM, Kohler GO (1966) Coumestrol in alfalfa as a factor in growth and carcass quality in lambs. Journal of Animal Science 25, 167-174.
| Crossref | Google Scholar | PubMed |

Omidvari M, Flematti GR, You MP, Abbaszadeh-Dahaji P, Barbetti MJ (2021) Phoma medicaginis isolate differences determine disease severity and phytoestrogen production in annual Medicago spp. Plant Disease 105, 2851-2860.
| Crossref | Google Scholar | PubMed |

Omidvari M, Flematti GR, You MP, Abbaszadeh-Dahaji P, Barbetti MJ (2022) Sequential infections by 32 isolates of Phoma medicaginis increase production of phytoestrogens in Medicago polymorpha var. brevispina. Crop & Pasture Science 73, 1367-1384.
| Crossref | Google Scholar |

Reed KFM (2016) Fertility of Herbivores consuming phytoestrogen-containing Medicago and Trifolium species. Agriculture 6, 35.
| Crossref | Google Scholar |

Roossinck MJ (2015) Review: Plants, viruses and the environment: ecology and mutualism. Virology 479-480, 271-277.
| Crossref | Google Scholar | PubMed |

Ryalls JMW, Riegler M, Moore BD, Johnson SN (2013) Biology and trophic interactions of lucerne aphids. Agricultural and Forest Entomology 15, 335-350.
| Crossref | Google Scholar |

Saddique M, Kamran M, Shahbaz M (2018) Differential responses of plants to biotic stress and the role of metabolites. In ‘Plant metabolites and regulation under environmental stress’. (Eds P Ahmad, MA Ahanger, VP Singh, DK Tripathi, P Alam, MN Alyemeni) pp. 69–87. (Elsevier: London, UK)

Seguin P, Zheng W, Souleimanov A (2004) Alfalfa phytoestrogen content: impact of plant maturity and herbage components. Journal of Agronomy and Crop Science 190, 211-217.
| Crossref | Google Scholar |

Sherwood RT, Olah AF, Oleson WH, Jones EE (1970) Effect of disease and injury on accumulation of a flavonoid estrogen coumestrol in alfalfa. Phytopathology 60, 684-688.
| Crossref | Google Scholar |

Silva EC, Abhayawardhana PL, Lygin AV, Robertson CL, Liu M, Liu Z, Schneider RW (2018) Coumestrol confers partial resistance in soybean plants against Cercospora leaf blight. Phytopathology 108, 935-947.
| Crossref | Google Scholar | PubMed |

Stuteville DL, Erwin DC (Eds) (1990) ‘Compendium of alfalfa diseases.’ 2nd edn. (American Phytopathological Society: St Paul, MN, USA)

Trucco V, de Breuil S, Bejerman N, Lenardon S, Giolitti F (2014) Complete nucleotide sequence of Alfalfa mosaic virus isolated from alfalfa (Medicago sativa L.) in Argentina. Virus Genes 48, 562-565.
| Crossref | Google Scholar | PubMed |

Trucco V, de Breuil S, Bejerman N, Lenardon S, Giolitti F (2016) Bean leafroll virus (BLRV) in Argentina: molecular characterization and detection in alfalfa fields. European Journal of Plant Pathology 146, 207-212.
| Crossref | Google Scholar |

Trucco VM, Bejerman N, de Breuil S, Cabrera Mederos D, Lenardon S, Giolitti F (2018) Alfalfa dwarf disease, a viral complex affecting alfalfa crop in Argentina. In ‘Proceedings of the second world alfalfa congress’. (Eds D Basigalup, MdC Spada, A Odorizzi, V Arolfo) pp. 84–87. (Instituto Nacional de Tecnología Agropecuaria (INTA): Argentina)

Trucco V, Cabrera Mederos D, Lenardon S, Giolitti F (2020) Geographical distribution, genetic studies and vector transmission of alfalfa enamovirus-1 infecting alfalfa crop in Argentina. Virus Genes 56, 662-667.
| Crossref | Google Scholar | PubMed |

Trucco V, Castellanos Collazo O, Vaghi Medina CG, Cabrera Mederos D, Lenardon S, Giolitti F (2022) Alfalfa mosaic virus (AMV): genetic diversity and a new natural host. Journal of Plant Pathology 104, 349-356.
| Crossref | Google Scholar |

Tu JC, Holmes TM (1980) Effect of alfalfa mosaic virus infection on nodulation, forage yield, forage protein, and overwintering of alfalfa. Journal of Phytopathology 97, 1-9.
| Crossref | Google Scholar |

Tucak M, Cupic T, Horvat D, Popovic S, Krizmanic G, Ravlic M (2020) Variation of phytoestrogen content and major agronomic traits in Alfalfa (Medicago sativa L.) populations. Agronomy 10, 87-11.
| Crossref | Google Scholar |

Wink M (1988) Plant breeding: importance of plant secondary metabolites for protection against pathogens and herbivores. Theoretical and Applied Genetics 75, 225-233.
| Crossref | Google Scholar |

Wink M (2018) Plant secondary metabolites modulate insect behavior-steps toward addiction? Frontiers in Physiology 9, 364.
| Crossref | Google Scholar |

Wroth JM, Dilworth MJ, Jones RAC (1993) Impaired nodule function in Medicago polymorpha L. infected with alfalfa mosaic virus. New Phytologist 124, 243-250.
| Crossref | Google Scholar |