Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

Potential expansion of Hass avocado cultivation under climate change scenarios threatens Mexican mountain ecosystems

Juan F. Charre-Medellín A , Jean-François Mas https://orcid.org/0000-0002-6138-9879 A C and Laura A. Chang-Martínez B
+ Author Affiliations
- Author Affiliations

A Centro de Investigaciones en Geografía Ambiental, Universidad Nacional Autónoma de México (UNAM), 58190, Morelia Michoacán, México.

B Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México (UNAM), 58190, Morelia Michoacán, México.

C Corresponding author. Email: jfmas@ciga.unam.mx

Crop and Pasture Science 72(4) 291-301 https://doi.org/10.1071/CP20458
Submitted: 15 November 2020  Accepted: 18 February 2021   Published: 20 April 2021

Abstract

Analysis of potential areas for crop establishment is necessary for sustainable agricultural planning, conservation of natural ecosystems, and achievement of food security’s current global objective. This study aims to model the current potential distribution of the optimal areas for Hass avocado crop in Mexico, along with the likely impact of climate change on the crops and the surrounding mountain ecosystems in the state of Michoacán, the principal producer. The maximum entropy approach was used to model the current and future potential distribution of the avocado using points of presence of avocado cultivation in Mexico and climatic variables under 10 global climate models (GCMs) and three representative concentration pathways (RCPs) from the IPCC. We estimated a current potential area for the establishment of Hass avocado crops in Mexico of 54 597 km2, associated with the temperate forests of the Transversal Volcanic Belt and the Sierra Madre del Sur. The loss of area for the establishment of avocado crops in Mexico was 31.1% under the most optimistic scenario, RCP 2.6, whereas 43.0% would be lost under the most pessimistic scenario, RCP 8.5. Currently, the potential distribution for the establishment of Hass avocado crops in the state of Michoacán is 22 561 km2. Given optimistic scenarios RCP 2.6 and RCP 8.5 of climate change by 2050, temperate forests mountain would represent 59 and 72.3%, respectively, of the potential area for establishing avocado in the state. Commercial pressure and climate change can lead to forest mountain ecosystem deforestation to establish new avocado crops and exacerbate water resource scarcity problems, jeopardising the entire production system’s sustainability. Territorial planning should prioritise conservation policies to avoid land-use change and establish strategies to maintain avocado crop sustainability in the long-term under climate change scenarios.

Keywords: Persea americana, Hass avocado, global climate models, Maxent modelling, modelling, forest, agriculture, sustainability, species distribution models.


References

Akpoti K, Kabo-bah AT, Zwart SJ (2019) Agricultural land suitability analysis: state-of-the-art and outlooks for integration of climate change analysis. Agricultural Systems 173, 172–208.
Agricultural land suitability analysis: state-of-the-art and outlooks for integration of climate change analysis.Crossref | GoogleScholarGoogle Scholar |

Alcántar-Rocillo J, Anguiano-Contreras J, Coria-Ávalos V, Hernández-Ruiz G, Ruiz-Corral JA (1999) Áreas potenciales para el cultivo de aguacate (Persea americana Mill.) cv. Hass en el estado de Michoacán, México. Revista Chapingo Serie Horticultura 5, 151–154.

Álvarez Bravo A, Salazar-García S, Ruiz-Corral J, Medina-García G (2017) Escenarios de cómo el cambio climático modificará las zonas productoras de aguacate ‘Hass’ en Michoacán. Revista Mexicana de Ciencias Agrícolas 19, 4035–4048.
Escenarios de cómo el cambio climático modificará las zonas productoras de aguacate ‘Hass’ en Michoacán.Crossref | GoogleScholarGoogle Scholar |

Barrientos-Priego A (2010) El Aguacate. Biodiversitas (Surakarta) 88, 1–7.

Bergh B, Ellstrand N (1986) Taxonomy of the Avocado. California Avocado Society 70, 135–146.

Chávez-León G, Tapia-Vargas L, Bravo-Espinoza M, Sáenz-Reyes J, Muñoz-Flores HJ, Vidales-Fernández I, Mendoza M (2012) ‘Impacto de cambio de uso de suelo forestal a huertos de aguacate.’ (Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias: Uruapan, Michoacán, México)

Choudhury MR, Deb P, Singha H, Chakdar B, Mendi M (2016) Predicting the probable distribution and threat of invasive Mimosa diplotricha Suavalle and Mikania micrantha Kunth in a protected tropical grassland. Ecological Engineering 97, 23–31.
Predicting the probable distribution and threat of invasive Mimosa diplotricha Suavalle and Mikania micrantha Kunth in a protected tropical grassland.Crossref | GoogleScholarGoogle Scholar |

Cobos ME, Peterson T, Barve N, Osorio-Olvera L (2019) kuenm: a R package for detailed development of ecological niche models using Maxent. PeerJ 7, e6281
kuenm: a R package for detailed development of ecological niche models using Maxent.Crossref | GoogleScholarGoogle Scholar | 30755826PubMed |

Diniz-Filho JAF, Mauricio-Bini L, Rangel T, Loyola R, Hof C, Nogués-Bravo D, Araújo B (2009) Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. Ecography 32, 897–906.
Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change.Crossref | GoogleScholarGoogle Scholar |

Elias MAS, Borges FJA, Bergamini LL, Franceschinelli V, Suji ER (2017) Climate change threatens pollination services in tomato crops in Brazil. Agriculture, Ecosystems & Environment 239, 257–264.
Climate change threatens pollination services in tomato crops in Brazil.Crossref | GoogleScholarGoogle Scholar |

Elith J, Graham C, Anderson R, Dudík M, Ferrier S, Guisan A, Hijmans R, Huettmann F, Leathwick J, Lehmann A, Li J, Lohmann L, Loiselle B, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton J, Peterson T, Phillips S, Richardson K, Scachetti‐Pereira R, Schapire R, Soberón J, Williams S, Wisz M, Zimmermann N (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151.
Novel methods improve prediction of species’ distributions from occurrence data.Crossref | GoogleScholarGoogle Scholar |

Escalante T, Rodríguez-Tapia G, Linaje M, Illoldi-Rangel P, González-López R (2013) Identification of areas of endemism from species distribution models: threshold selection and Nearctic mammals. TIP 16, 5–17.
Identification of areas of endemism from species distribution models: threshold selection and Nearctic mammals.Crossref | GoogleScholarGoogle Scholar |

Feng X, Park DS, Liang Y, Pandey R, Papeş M (2019) Collinearity in ecological niche modeling: Confusions and challenges. Ecology and Evolution 9, 10365–10376.
Collinearity in ecological niche modeling: Confusions and challenges.Crossref | GoogleScholarGoogle Scholar | 31624555PubMed |

Fewster M, Buckland S (2001) Similarity indices for spatial ecological data. Biometrics 57, 495–501.
Similarity indices for spatial ecological data.Crossref | GoogleScholarGoogle Scholar |

Garrido-Ramírez E, Noriega-Cantú D, Gutiérrez-Del Valle A, González-Mateos R, Pereyda-Hernández J, Domínguez-Márquez VM, López-Estrada ME, Alarcón-Cruz N, Valentín-Benigno A, Leyva-Mayo A (2013) Áreas potenciales para el cultivo del aguacate (Persea americana L.) cultivar “Hass” en el estado de Guerrero, México. Agro Productividad 6, 52–57.

Gassert F, Reig P, Luo T, Maddocks A (2013) ‘A weighted aggregation of spatially distinct hydrological indicators.’ (World Resources Institute: Washington, DC)

Gómez-Tagle A, Morales-Chávez R, García-González Y, Francisco A, Rojas GT (2019) Partición de la precipitación en cultivo de aguacate y bosque de pino-encino en Michoacán, México. Biologicas: Revista de la des Ciencias Biologico Agropecuarias Universidad Michoacana de San Nicolas de Hidalgo 21, 1–18.

Gómez-Tagle Ch A, Gómez-Tagle A, Ávila JA, Bruijnzeel LA (2015) Partición de la precipitación en un bosque tropical montano de pino-encino en el centro de México. Bosque 36, 505–518.
Partición de la precipitación en un bosque tropical montano de pino-encino en el centro de México.Crossref | GoogleScholarGoogle Scholar |

Hernández-Aguilar E (2018) Variación altitudinal de variables meteorológicas en el municipio de Zitácuaro, Michoacán: Implicaciones para los usos de suelo agrícolas. Masters thesis, Universidad Nacional Autónoma de México, México.

Hijmans R, Cameron S, Parra J, Peter G, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25, 1965–1978.
Very high resolution interpolated climate surfaces for global land areas.Crossref | GoogleScholarGoogle Scholar |

IPCC (2013) ‘Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.’ (Eds TF Stocker, D Qin, GK Plattner, MMB Tignor, SK Allen, J Boschung, A Nauels, Y Xia, V Bex, PM Midgley) (Cambridge University Press: Cambridge, UK)

Jodar-Abellan A, Ruiz M, Melgarejo J (2018) Evaluación del impacto del cambio climático sobre una cuenca hidrológica en régimen natural (SE, España) usando un modelo SWAT. Revista Mexicana de Ciencias Geológicas 35, 240–253.
Evaluación del impacto del cambio climático sobre una cuenca hidrológica en régimen natural (SE, España) usando un modelo SWAT.Crossref | GoogleScholarGoogle Scholar |

Kalra N, Chander S, Pathak H, Aggarwal P, Gupta N, Sehgal M, Chakraborty D (2007) Impacts of climate change on agriculture. Outlook on Agriculture 36, 109–118.
Impacts of climate change on agriculture.Crossref | GoogleScholarGoogle Scholar |

Liu C, White M, Newell G (2013) Selecting thresholds for the prediction of species occurrence with presence-only data. Journal of Biogeography 40, 778–789.
Selecting thresholds for the prediction of species occurrence with presence-only data.Crossref | GoogleScholarGoogle Scholar |

Lobell B, Burke B, Tebaldi C (2008) Needs for Food Security in 2030 Region. Science 319, 607–610.
Needs for Food Security in 2030 Region.Crossref | GoogleScholarGoogle Scholar |

Luna A, López-Martínez V, Pérez-De la O NB, Jiménez-García D, Jones R, Castañeda-Vildozola A, Ruiz-Montiel C (2017) Actual and potential distribution of five regulated avocado pests across Mexico, using the maximum entropy algorithm. The Florida Entomologist 100, 92–100.
Actual and potential distribution of five regulated avocado pests across Mexico, using the maximum entropy algorithm.Crossref | GoogleScholarGoogle Scholar |

Mas J-F, Lemoine-Rodríguez R, González-López R, López-Sánchez J, Piña-Garduño A (2017a) Land use/land cover change detection combining automatic processing and visual interpretation. European Journal of Remote Sensing 50, 626–635.
Land use/land cover change detection combining automatic processing and visual interpretation.Crossref | GoogleScholarGoogle Scholar |

Mas J-F, Lemoine-Rodríguez R, González-López R, López-Sánchez J, Piña-Garduño A, Herrera-Flores E (2017b) Evaluación de las tasas de deforestación en Michoacán a escala detallada mediante un método híbrido de clasificación de imágenes SPOT. Madera y Bosques 23, 119–132.
Evaluación de las tasas de deforestación en Michoacán a escala detallada mediante un método híbrido de clasificación de imágenes SPOT.Crossref | GoogleScholarGoogle Scholar |

McKenzie FC, Williams J (2015) Sustainable food production: constraints, challenges and choices by 2050. Food Security 7, 221–233.
Sustainable food production: constraints, challenges and choices by 2050.Crossref | GoogleScholarGoogle Scholar |

Molinos J, Poloczanska E, Olden J, Lawler JJ, Burrows MT (2017) Biogeographical shifts and climate change. In ‘Encyclopedia of the Anthropocene’. (Eds D DellaSala, M Goldstein) pp. 217–228. (Elsevier: Amsterdam, Netherlands)

Moratelli R, De Andreazzi CS, De Oliveira JA, Cordeiro JL (2011) Current and potential distribution of Myotis simus (Chiroptera, Vespertilionidae). Mammalia 75, 227–234.
Current and potential distribution of Myotis simus (Chiroptera, Vespertilionidae).Crossref | GoogleScholarGoogle Scholar |

Narouei-Khandan H, Halbert S, Worner S, van Bruggen A (2016) Global climate suitability of citrus huanglongbing and its vector, the Asian citrus psyllid, using two correlative species distribution modeling approaches, with emphasis on the USA. European Journal of Plant Pathology 144, 655–670.
Global climate suitability of citrus huanglongbing and its vector, the Asian citrus psyllid, using two correlative species distribution modeling approaches, with emphasis on the USA.Crossref | GoogleScholarGoogle Scholar |

Oke TA, Hager HA (2017) Assessing environmental attributes and effects of climate change on Sphagnum peatland distributions in North America using single- and multi-species models. PLoS One 12, e0175978
Assessing environmental attributes and effects of climate change on Sphagnum peatland distributions in North America using single- and multi-species models.Crossref | GoogleScholarGoogle Scholar | 28426754PubMed |

Olson DM, Dinerstein E, Wikramanayake E, Burgess N, Powell G, Underwood E, D’amico J, Itoua I, Strand H, Morrison J, Loucks C, Allnutt T, Ricketts T, Kura Y, Lamoreux J, Wettengel W, Hedao P, Kassem K (2001) Terrestrial ecoregions of the world: a new map of life on earth. Bioscience 51, 933–938.
Terrestrial ecoregions of the world: a new map of life on earth.Crossref | GoogleScholarGoogle Scholar |

Osorio-Olvera L (2016) NicheToolbox: a web tool for exploratory data analysis and niche modeling. Available at: http://shiny.conabio.gob.mx:3838/nichetoolb2/ (accessed 19 February 2019).

Pérez-Álvarez S, Ávila-Quezada G, Coto-Arbelo O (2015) Revisión bibliográfica. El aguacatero (Persea americana Mill). Cultivos Tropicales 36, 111–123.

Peterson AT, Papeş M, Soberón J (2008) Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecological Modelling 213, 63–72.
Rethinking receiver operating characteristic analysis applications in ecological niche modeling.Crossref | GoogleScholarGoogle Scholar |

Peterson AT, Cobos ME, Jiménez-García D (2018) Major challenges for correlational ecological niche model projections to future climate conditions. Annals of the New York Academy of Sciences 1429, 66–77.
Major challenges for correlational ecological niche model projections to future climate conditions.Crossref | GoogleScholarGoogle Scholar | 29923606PubMed |

Phillips S, Anderson R, Schapire R (2006) Maximum entropy modeling of species geographic distribution. Ecological Modelling 190, 231–259.
Maximum entropy modeling of species geographic distribution.Crossref | GoogleScholarGoogle Scholar |

Phillips SJ, Anderson RP, Dudík M, Schepire R, Blair M (2017) Opening the black box: an open-source release of Maxent. Ecography 40, 887–893.
Opening the black box: an open-source release of Maxent.Crossref | GoogleScholarGoogle Scholar |

Qiao H, Soberón J, Peterson AT (2015) No silver bullets in correlative ecological niche modelling: insights from testing among many potential algorithms for niche estimation. Methods in Ecology and Evolution 6, 1126–1136.
No silver bullets in correlative ecological niche modelling: insights from testing among many potential algorithms for niche estimation.Crossref | GoogleScholarGoogle Scholar |

Ramírez-Gil JG, Morales JG, Peterson AT (2018) Potential geography and productivity of “Hass” avocado crops in Colombia estimated by ecological niche modeling. Scientia Horticulturae 237, 287–295.
Potential geography and productivity of “Hass” avocado crops in Colombia estimated by ecological niche modeling.Crossref | GoogleScholarGoogle Scholar |

Ramírez-Gil J, Cobos M, Jiménez-García D, Morales-Osorio JG, Peterson T (2019) Current and potential future distributions of Hass avocados in the face of climate change across the Americas. Crop & Pasture Science 70, 694–708.
Current and potential future distributions of Hass avocados in the face of climate change across the Americas.Crossref | GoogleScholarGoogle Scholar |

Rana SK, Rana HK, Ghimire SK, Shrestha K, Ranjitkar S (2017) Predicting the impact of climate change on the distribution of two threatened Himalayan medicinal plants of Liliaceae in Nepal. Journal of Mountain Science 14, 558–570.
Predicting the impact of climate change on the distribution of two threatened Himalayan medicinal plants of Liliaceae in Nepal.Crossref | GoogleScholarGoogle Scholar |

Real R, Vargas J (1996) The probabilistic basis of Jaccard’s Index of Similarity. Systematic Biology 45, 380–385.
The probabilistic basis of Jaccard’s Index of Similarity.Crossref | GoogleScholarGoogle Scholar |

SAGARPA (2017) ‘Planeación Agrícola Nacional 2017–2030 Aguacate Méxicano.’ (Secretaría de Agricultura, Ganadería Desarrollo Rural, Pesca y Alimentación: Ciudad de México, México)

Sánchez-Espejo M (2019) the implication of the avocado trade for Global water scarcity. Masters thesis, Universitat Politècnica de València, España.

Schaffer B, Wolstenholme B, Whiley A (2013) ‘The avocado: botany, production and uses.’ (CABI: Wallingford, Oxfordshire, UK)

SIAP (2017) Estadística de Producción Agrícola. Available at: http://infosiap.siap.gob.mx/gobmx/datosAbiertos.php (accessed 8 February 2019).

Soberón J, Osorio-Olvera L, Peterson T (2017) Diferencias conceptuales entre modelación de nichos y modelación de áreas de distribución. Revista Mexicana de Biodiversidad 88, 437–441.
Diferencias conceptuales entre modelación de nichos y modelación de áreas de distribución.Crossref | GoogleScholarGoogle Scholar |

Sosa-Rodríguez F (2015) Política del cambio climático en México: avances, obstáculos y retos. Revista Internacional de Estadística y Geografía 6, 4–23.

Vallejo Pérez MR, Téliz Ortiz D, De La Torre Almaraz R, López Martínez J, Nieto Ángel D (2017) Avocado sunblotch viroid: pest risk and potential impact in México. Crop Protection 99, 118–127.
Avocado sunblotch viroid: pest risk and potential impact in México.Crossref | GoogleScholarGoogle Scholar |

Villanueva-Tomas T, Zepeda-Anaya J (2016) La Producción de Aguacate en el Estado de Michoacán y sus efectos en los índices de pobreza, el cambio del uso de suelo y la migración. Revista Mexicana Sobre Desarrollo Local 2, 1–12.

Wei B, Wang R, Hou K, Wanh X, Wu W (2018) Predicting the current and future cultivation regions of Carthamus tinctorius L. using MaxEnt model under climate change in China. Global Ecology and Conservation 16, e00477
Predicting the current and future cultivation regions of Carthamus tinctorius L. using MaxEnt model under climate change in China.Crossref | GoogleScholarGoogle Scholar |