Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

Combined foliar selenium and zinc biofortification in field pea (Pisum sativum): accumulation and bioavailability in raw and cooked grains

Maria J. Poblaciones A B C and Zed Rengel B
+ Author Affiliations
- Author Affiliations

A Department of Agronomy and Forest Environment Engineering, University of Extremadura Avenida Adolfo Suárez s/n, 06007 Badajoz, Spain.

B UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia.

C Corresponding author. Email: majops@unex.es

Crop and Pasture Science 68(3) 265-271 https://doi.org/10.1071/CP17082
Submitted: 9 December 2016  Accepted: 27 February 2017   Published: 27 March 2017

Abstract

Millions of people have an inadequate intake of selenium (Se) and zinc (Zn), and foliar biofortification may minimise these problems. To evaluate the efficacy of combined foliar Se and Zn fertilisation in field pea (Pisum sativum L.) grains, foliar Se and Zn applications were tested individually and in all combinations (0, 0.03% or 0.06% (w/v) NaSeO4, and 0, 0.25% or 0.5% (w/v) ZnSO4.7H2O) at early grain filling. Plant growth was not influenced by any of the treatments. There was a positive relationship between total Se or Zn concentration in raw or cooked grains and respective Se or Zn application dose. Grain Zn accumulation was positively influenced by the combined application of Se and Zn. Grain cooking caused a slight decrease in grain Se (by 7.4%) and Zn concentrations (by 19%); however, cooking enhanced Zn bioavailability. The consumption of 100 g of cooked, biofortified field peas would provide ~50% of recommended daily intake of Zn and 45% of Se. The present study successfully biofortified field peas with Se and Zn, with the combined foliar application of Se and Zn being the best option.

Additional keywords: agronomic biofortification, foliar fertilisation, sodium selenate, zinc fertilisers, phytate.


References

Alloway BJ (2008) ‘Zinc in soils and crop nutrition.’ 2nd edn (International Zinc Association: Brussels)

Amarakoon D, Thavarajah D, McPhee K, Thavarajah P (2012) Iron-, zinc-, and magnesium-rich field peas (Pisum sativum L.) with naturally low phytic acid: A potential food-based solution to global micronutrient malnutrition. Journal of Food Composition and Analysis 27, 8–13.
Iron-, zinc-, and magnesium-rich field peas (Pisum sativum L.) with naturally low phytic acid: A potential food-based solution to global micronutrient malnutrition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtV2gtrnF&md5=6de28d2985dcfce8cb33d737a7587db4CAS |

Amarakoon D, Thavarajah D, Gupta DS, McPhee K, DeSutter T, Thavarajah P (2015) Genetic and environmental variation of seed iron and food matrix factors of North-Dakota-grown field peas (Pisum sativum L.). Journal of Food Composition and Analysis 37, 67–74.
Genetic and environmental variation of seed iron and food matrix factors of North-Dakota-grown field peas (Pisum sativum L.).Crossref | GoogleScholarGoogle Scholar |

Arthur JR (2003) Selenium supplementation: Does soil supplementation help and why? The Proceedings of the Nutrition Society 62, 393–397.
Selenium supplementation: Does soil supplementation help and why?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmt1Gmu7c%3D&md5=305d2eed79deda16cfc43454cb8d7e78CAS |

Brigide P, Canniatti-Brazaca SG, Silva MO (2014) Nutritional characteristics of biofortified common beans. Food Science and Technology 34, 493–500.
Nutritional characteristics of biofortified common beans.Crossref | GoogleScholarGoogle Scholar |

Cakmak I, Kalayci M, Kaya Y, Torun AA, Aydin N, Wang Y, Arisoy Z, Erdem H, Yazici A, Gokmen O, Ozturk L, Horst WJ (2010) Biofortification and localization of zinc in wheat grain. Journal of Agricultural and Food Chemistry 58, 9092–9102.
Biofortification and localization of zinc in wheat grain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptlWgt7w%3D&md5=b1e5d4bad384a0bd5a98b2828f05d98bCAS |

Cardoso ED, Haga KI, Binotti FF, Filho WVV, Nogueira DC (2012) Doses de zinco e nitrogenio na productividade e qualidade de graos de ervilha. Pesquisa Agropecuaria Tropical Goiânia 42, 263–271.
Doses de zinco e nitrogenio na productividade e qualidade de graos de ervilha.Crossref | GoogleScholarGoogle Scholar |

Chen YL, Dunbabin VM, Diggle AJ, Siddique KHM, Rengel Z (2013) Phosphorus starvation boosts carboxylate secretion in P-deficient genotypes of Lupinus angustifolius with contrasting root structure. Crop & Pasture Science 64, 588–599.
Phosphorus starvation boosts carboxylate secretion in P-deficient genotypes of Lupinus angustifolius with contrasting root structure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlyqurvP&md5=8b462a00ea9e87f2f78c96043a14577cCAS |

Diapari M, Sindhu A, Warkentin TD, Bett K, Tar’an B (2015) Population structure and market-trait association studies of iron, zinc and selenium concentrations in seed of field pea (Pisum sativum L.). Molecular Breeding 35, 30–42.
Population structure and market-trait association studies of iron, zinc and selenium concentrations in seed of field pea (Pisum sativum L.).Crossref | GoogleScholarGoogle Scholar |

Elmadfa I (2009) ‘The European nutrition and health report.’ (Forum of Nutrition: Vienna)

Engle-Stone R, Yeung A, Welch R, Glahn R (2005) Meat and ascorbic acid can promote Fe availability from Fe-phytate but not from Fe-tannic acid complexes. Journal of Agricultural and Food Chemistry 53, 10276–10284.
Meat and ascorbic acid can promote Fe availability from Fe-phytate but not from Fe-tannic acid complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Kjtr%2FO&md5=2c0a7ea0a0185ae24823b4fa63f94aa3CAS |

Evans WJ, Martin CJ (1988) Interactions of Mg(II), Co(II), Ni(II), and Zn(II) with phytic acid. A calorimetric study. Journal of Inorganic Biochemistry 32, 259–268.
Interactions of Mg(II), Co(II), Ni(II), and Zn(II) with phytic acid. A calorimetric study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXkt1ehsL4%3D&md5=9479e7fa0e2ea499a87343b705d21797CAS |

Fairweather-Tait SJ, Bao Y, Broadley MR, Collings R, Ford D, Hesketh JE, Hurst R (2011) Selenium in human health and disease. Antioxidants & Redox Signalling 14, 1337–1383.
Selenium in human health and disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivVGjtrc%3D&md5=38d75019595670691fcfc121976334bbCAS |

Fang Y, Wang L, Xin Z, Zhao L, An X, Hu Q (2008) Effect of foliar application of zinc, selenium, and iron fertilizers on nutrients concentration and yield of rice grain in China. Journal of Agricultural and Food Chemistry 56, 2079–2084.
Effect of foliar application of zinc, selenium, and iron fertilizers on nutrients concentration and yield of rice grain in China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXis1KgtrY%3D&md5=6cb428e9d9bb238a14d2bb7badbf65f9CAS |

FAOSTAT (2015) Food and agricultural commodities production. FAO, Rome. Available at: http://faostat.fao.org (accessed 10 January 2016).

Garrett RG, Gawalko E, Wang N, Richter A, Warkentin TD (2013) Macro-relationships between regional-scale field pea (Pisum sativum) selenium chemistry and environmental factors in western Canada. Canadian Journal of Plant Science 93, 1059–1071.
Macro-relationships between regional-scale field pea (Pisum sativum) selenium chemistry and environmental factors in western Canada.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFSqur4%3D&md5=1c854f0b54a9ce7d97d1b27521e8bbf7CAS |

Germ M, Pongrac P, Regvar M, Vogel-Mikuš K, Stibilj V, Jaćimović R, Kreft I (2013) Impact of double Zn and Se biofortification of wheat plants on the element concentrations in the grain. Plant, Soil and Environment 59, 316–321.

Gibson RS (2006) Zinc: the missing link in combating micronutrient malnutrition in developing countries. The Proceedings of the Nutrition Society 65, 51–60.
Zinc: the missing link in combating micronutrient malnutrition in developing countries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xis1aqt7Y%3D&md5=9ebcbd24d0f20983ba577a1b595e3085CAS |

Gomez-Coronado F, Poblaciones MJ, Almeida AS, Cakmak I (2016) Zinc (Zn) concentration of bread wheat grown under Mediterranean conditions as affected by genotype and soil/foliar Zn application. Plant and Soil 401, 331–346.
Zinc (Zn) concentration of bread wheat grown under Mediterranean conditions as affected by genotype and soil/foliar Zn application.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvFCltLvE&md5=bed455428eff820f7d0bd3fc4ac67762CAS |

Haug W, Lantzsch HJ (1983) Sensitive method for the rapid determination of phytate in cereals and cereal products. Journal of the Science of Food and Agriculture 34, 1423–1426.
Sensitive method for the rapid determination of phytate in cereals and cereal products.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXltVWiug%3D%3D&md5=922e9c55408a0be082fc6a7ded7364feCAS |

Huett DO, Maier NA, Sparrow LA, Piggot TJ (1997) Vegetable crops. In ‘Plant analysis: an interpretation manual’. (Eds DJ Reuter, JB Robinson) pp. 383–464. (CSIRO Publishing: Melbourne)

Judson GJ, Reuter DJ (1999) Selenium. In ‘Soil analysis: an interpretation manual’. (Eds KI Peverill, LA Sparrow, DJ Reuter) pp. 325–329. (CSIRO Publishing: Melbourne)

Levenson CW, Morris D (2011) Zinc and neurogenesis: making new neurons from development to adulthood. Advances in Nutrition 2, 96–100.
Zinc and neurogenesis: making new neurons from development to adulthood.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsF2lurc%3D&md5=87cf52dfa531a7a420c4bf5d3fcf0666CAS |

Lindsay WL, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal 42, 421–428.
Development of a DTPA soil test for zinc, iron, manganese and copper.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXltVKntLs%3D&md5=5296dd249143277c327494f68d0af790CAS |

Mao H, Wang J, Wang Z, Zang Y, Lyons G, Zou C (2014) Using agronomic biofortification to boost zinc, selenium, and iodine concentrations of food crops grown on the loess plateau in China. Journal of Soil Science and Plant Nutrition 14, 459–470.

Morris ER, Ellis R (1989) Usefulness of the dietary phytic acid/zinc molar ratio as an index of zinc bioavailability to rats and humans. Biological Trace Element Research 19, 107–117.
Usefulness of the dietary phytic acid/zinc molar ratio as an index of zinc bioavailability to rats and humans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXltlaqur8%3D&md5=e525b69d8ec3b4c8faa5a7bf52f7d2a6CAS |

National Research Council (2001) ‘Reference intakes for vitamin A, vitamin K, As, B, Cr, Cu, I, Fe, Mn, Mo, Ni, Si and Zn.’ (Ed. Institute of Medicine/Food and Nutrition Board) pp. 37–46. (National Academy Press: Washington, DC)

Pandey N, Gupta B, Pathak GC (2013) Enhanced yield and nutritional enrichment of seeds of Pisum sativum L. through foliar application of zinc. Scientia Horticulturae 164, 474–483.
Enhanced yield and nutritional enrichment of seeds of Pisum sativum L. through foliar application of zinc.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXitVSgs73F&md5=ddfea1a2349041589525c2e7afa2510bCAS |

Poblaciones MJ, Rengel Z (2016) Soil and foliar zinc biofortification in field pea (Pisum sativum L.): Grain accumulation and bioavailability in raw and cooked grains. Food Chemistry 212, 427–433.
Soil and foliar zinc biofortification in field pea (Pisum sativum L.): Grain accumulation and bioavailability in raw and cooked grains.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XpsFOjtrw%3D&md5=739952dd3fc2bc1430db301f52f00250CAS |

Poblaciones MJ, Rodrigo SM, Santamaria O (2013) Evaluation of the potential of peas (Pisum sativum L.) to be used in selenium biofortification programs under Mediterranean conditions. Biological Trace Element Research 151, 132–137.
Evaluation of the potential of peas (Pisum sativum L.) to be used in selenium biofortification programs under Mediterranean conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmvVWm&md5=6a5db61a6ba5f4ca48ec2dc46f392ecfCAS |

Poblaciones MJ, Santamaria O, Garcia-White T, Rodrigo SM (2014a) Selenium biofortification in bread-making wheat under Mediterranean conditions: Influence on grain yield and quality parameters. Crop & Pasture Science 65, 362–369.
Selenium biofortification in bread-making wheat under Mediterranean conditions: Influence on grain yield and quality parameters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXotVKnsbw%3D&md5=55be31ab691670c83d79eecf22a594a1CAS |

Poblaciones MJ, Rodrigo S, Santamaría O, Chen Y, McGrath SP (2014b) Selenium accumulation and speciation in biofortified chickpea (Cicer arietinum L.) under Mediterranean conditions. Journal of the Science of Food and Agriculture 94, 1101–1106.
Selenium accumulation and speciation in biofortified chickpea (Cicer arietinum L.) under Mediterranean conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFGjsLrL&md5=46ec4b1366c328193a84cfbb15c50ea9CAS |

Raboy V (2002) Progress in breeding low phytate crops. The Journal of Nutrition 132, 503S–505S.

Rayman MP (2012) Selenium and human health. Lancet 379, 1256–1268.
Selenium and human health.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjt1Orsb8%3D&md5=5440f22aeb4282625dd18e8c76227522CAS |

Sims JT, Johnson GV (1991) Micronutrient soil test. In ‘Micronutrients in agriculture’. Book Series No. 4. 2nd edn (Eds JJ Mordvedt, FR Cox, LM Shuman, MR Welch) pp. 427–476. (SSSA Publishing: Madison, WI, USA)

Smrkolj P, Germ M, Krett I, Stibilj V (2006) Respiratory potential and Se compounds in pea (Pisum sativum L.) plants grown from Se-enriched seeds. Journal of Experimental Botany 57, 3595–3600.
Respiratory potential and Se compounds in pea (Pisum sativum L.) plants grown from Se-enriched seeds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlCnsLjI&md5=aa7e31bab917efc93a4c23ce1f76d53eCAS |

Stroud JL, Li HF, Lopez-Bellido FJ, Broadley MR, Foot I, Fairweather-Tait SJ, Hart DJ, Hurst R, Knott P, Mowat H, Norman K, Scott P, Tucker M, White PJ, McGrath SP, Zhao FJ (2010) Impact of sulphur fertilization on crop response to selenium fertilisation. Plant and Soil 332, 31–40.
Impact of sulphur fertilization on crop response to selenium fertilisation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntlGhu78%3D&md5=17cec3287d3c1db2e2c6dfc279f6be3cCAS |

Thavarajah D, Ruszkowski J, Vandenberg A (2008) High potential for selenium biofortification of lentils (Lens culinaris L.). Journal of Agricultural and Food Chemistry 56, 10747–10753.
High potential for selenium biofortification of lentils (Lens culinaris L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht12ktrjN&md5=1f35f87eb1444db4da71e3c7dabea26aCAS |

Thavarajah D, Warkentin T, Vandenberg A (2010) Natural enrichment of selenium in Saskatchewan field peas (Pisum sativum L.). Canadian Journal of Plant Science 90, 383–389.
Natural enrichment of selenium in Saskatchewan field peas (Pisum sativum L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFKgsrbP&md5=13516e74d8b44fa2d7a0a7ea23d6c24dCAS |

Vijayakumari K, Sidduraju P, Pugalenthi M, Janardhanan K (1998) Effect of soaking and heat processing on the levels of antinutrients and digestible proteins in seeds of Vigna sinensis. Food Chemistry 111, 132–138.

Wang N, Hatcher DW, Gawalko EJ (2008) Effect of variety and processing of nutrients and certain anti-nutrients in field peas (Pisum sativum). Food Chemistry 111, 132–138.
Effect of variety and processing of nutrients and certain anti-nutrients in field peas (Pisum sativum).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmt1artLY%3D&md5=5cf6784de0301a55d12d68614801d679CAS |

Wang N, Hatcher DW, Toews R, Gawalko EJ (2009) Influence of cooking and dehulling on nutritional composition of several varieties of lentils (Lens culinaris). Lebensmittel-Wissenschaft + Technologie 42, 842–848.
Influence of cooking and dehulling on nutritional composition of several varieties of lentils (Lens culinaris).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVCmtLs%3D&md5=75f186386c1a17f19d85577347605ed6CAS |

Welch RM, Graham RD (2002) Breeding crops for enhanced micronutrient content. Plant and Soil 245, 205–214.
Breeding crops for enhanced micronutrient content.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnvVCitrg%3D&md5=5824b927607b6ac461c851873a03a4f6CAS |

WHO (World Health Organization) (2009) ‘Global health risks, mortality and burden of disease attributable to selected major risks.’ (WHO: Geneva)

Zhao FJ, McGrath SP (1994) Extractable sulphate and organic sulphur in soils and their availability to plants. Plant and Soil 164, 243–250.
Extractable sulphate and organic sulphur in soils and their availability to plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXislamsrY%3D&md5=38acf4c47c00b924923d80b2fd8421cdCAS |

Zou CQ, Zhang YQ, Rashid A, Ram H, Savasli E, Arisoy RZ, Ortiz-Monasterio I, Simunji S, Wang ZH, Sohu V, Hassan M, Kaya Y, Onder O, Lungu O, Yaqub Mujahid M, Joshi AK, Zelenskiy Y, Zhang FS, Cakmak I (2012) Biofortification of wheat with zinc through zinc fertilization in seven countries. Plant and Soil 361, 119–130.
Biofortification of wheat with zinc through zinc fertilization in seven countries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1yntbbK&md5=b116e479ba4cb71281577d71744e0970CAS |