Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

Physiological, anatomical and antioxidant responses to salinity in the Mediterranean pastoral grass plant Stipa lagascae

Raoudha Abdellaoui A E F , Fayçal Boughalleb A F , Zohra Chebil B F , Maher Mahmoudi C and Azaiez Ouled Belgacem D
+ Author Affiliations
- Author Affiliations

A Laboratoire d’Ecologie Pastorale, Institut des Régions Arides, Université de Gabès, 4119 Médenine, Tunisia.

B Faculté des Sciences de Gabès, Université de Gabès, 6029 Gabès, Tunisia.

C Faculté des Sciences de Tunis, Université El Manar, 1068 Tunis, Tunisia.

D International Center for Agricultural Research in the Dry Areas (ICARDA), Arabian Peninsula Regional Program, PO Box 13979, Dubai, United Arab Emirates.

E Corresponding author. Email: raoudhamabdellaoui@yahoo.com

F Authors contributed equally to the work.

Crop and Pasture Science 68(9) 872-884 https://doi.org/10.1071/CP16365
Submitted: 4 October 2016  Accepted: 12 October 2017   Published: 15 November 2017

Abstract

Soil and water salinity is a major environmental problem in the dry Mediterranean regions, affecting rangeland production. This study investigated the effects of salinity on the wild perennial grass (Poaceae) species Stipa lagascae R. & Sch., a potential forage plant that could be used to rehabilitate degraded rangelands in dry areas. In a laboratory, 3-month-old S. lagascae seedlings were subjected to increasing salt treatments (0–400 mm NaCl) for 45 days. Physiological and biochemical parameters such as leaf water potential (Ψw), leaf relative water content (RWC), proline, total soluble sugars, Na+, K+ and Ca2+ contents, and catalase, ascorbate peroxidase and glutathione reductase activities were measured.

Total soluble sugars and proline concentrations increased and Ψw and RWC decreased with increasing salt concentrations. Lower salt concentrations induced a non-significant degradation of chlorophyll pigments. Shoot Na+ content increased with a salinity level, whereas shoot K+ and Ca2+ concentrations decreased and the K+ : Na+ ratio was lower. The salinity threshold, above which S. lagascae showed signs of damage, occurred at 300 mm. Plants have evolved reactive oxygen species (ROS) scavenging enzymes including catalase, ascorbate peroxidase and glutathione reductase, which provide cells with an efficient mechanism to neutralise ROS. The tolerance strategies of S. lagascae to moderate salinity seem to include osmotic adjustment through total soluble sugars and proline accumulation, and highly inducible antioxidative defence. Further investigations are necessary to study the effect of salt stress on distribution of ions (Na+, K+, Ca2+, Mg2+, Cl, NO3, SO42–) and osmotic adjustment. Photosynthesis and water-use efficiency parameters could be also useful tools.

Additional keywords: water relations, osmoticums, lipid peroxidation, ion content, antioxidant enzymes, leaf anatomy.


References

Abdellaoui R, Sayah A, Gouja H, Ouled Belgacem A (2012) Extraction de l’ADN et optimisation de la PCR (polymorphism chain reaction) pour l’application des marqueurs RAPD (random amplified polymorphism DNA) chez Stipa lagascae. Acta Botanica Gallica: Botany Letters 159, 73–78.
Extraction de l’ADN et optimisation de la PCR (polymorphism chain reaction) pour l’application des marqueurs RAPD (random amplified polymorphism DNA) chez Stipa lagascae.Crossref | GoogleScholarGoogle Scholar |

Aebi H (1984) Catalase in vitro. Methods in Enzymology 105, 121–126.
Catalase in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXltVKis7s%3D&md5=727e7abeb2ab1669c88351517ef0db54CAS |

Al Hassan M, Chaura J, Donat-Torres MP, Boscaiu M, Vicente O (2017) Antioxidant responses under salinity and drought in three closely related wild monocots with different ecological optima. AoB Plants 9, plx009
Antioxidant responses under salinity and drought in three closely related wild monocots with different ecological optima.Crossref | GoogleScholarGoogle Scholar |

Amirjani MR (2011) Effect of salinity on growth, sugar content, pigments and enzyme activity of rice. International Journal of Botany 7, 73–81.
Effect of salinity on growth, sugar content, pigments and enzyme activity of rice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht12jurbJ&md5=0cf5cce070c3cb798455b75ee0a9a197CAS |

Apel K, Hirt H (2004) Reactive oxygen species, metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology 55, 373–399.
Reactive oxygen species, metabolism, oxidative stress, and signal transduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvFeisL0%3D&md5=c59edc954fcfb7562d44253a2051f700CAS |

Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany 59, 206–216.
Roles of glycine betaine and proline in improving plant abiotic stress resistance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Cqtb%2FF&md5=cab4457ba10a66356be533f43f4f4f2dCAS |

Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Science 166, 3–16.
Potential biochemical indicators of salinity tolerance in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltVOqsA%3D%3D&md5=62b95be06eab44ad7f3a5d909c27467cCAS |

Banu MNA, Hoque MA, Watanabe-Sugimoto M, Matsuoka K, Nakamura Y, Shimoishi Y, Murata Y (2009) Proline and glycinebetaine induce antioxidant defense gene expression and suppress cell death in cultured tobacco cells under salt stress. Journal of Plant Physiology 166, 146–156.
Proline and glycinebetaine induce antioxidant defense gene expression and suppress cell death in cultured tobacco cells under salt stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXit1Kntbo%3D&md5=c50399d841a79f3469339dd62f76eafaCAS |

Bartels D, Ramanjulu S (2005) Drought and salt tolerance in plants. Plant Science 24, 23–58.
Drought and salt tolerance in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXis12ns7c%3D&md5=4f52fc2d83223480a5dec4623cc9e9fbCAS |

Ben Rejeb K, Abdelly C, Savouré A (2014) How reactive oxygen species and proline face stress together. Plant Physiology and Biochemistry 80, 278–284.
How reactive oxygen species and proline face stress together.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpsl2mt70%3D&md5=c38b79df3c6364bfab6122ab3cac46f1CAS |

Bongi G, Loreto F (1989) Gas exchange properties of salt-stressed olive (Olea europaea L.) leaves. Plant Physiology 90, 1408–1416.
Gas exchange properties of salt-stressed olive (Olea europaea L.) leaves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXlsFSksbs%3D&md5=36c7ea0352c9192e8bc5ce227891322eCAS |

Boughalleb F, Abdellaoui R, Hadded Z, Neffati M (2015) Anatomical adaptations of the desert species Stipa lagascae against drought stress. Biologia 70, 1042–1052.
Anatomical adaptations of the desert species Stipa lagascae against drought stress.Crossref | GoogleScholarGoogle Scholar |

Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Analytical Biochemistry 72, 248–254.
A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XksVehtrY%3D&md5=ec1c81995b5f1a7887c0acb71f446495CAS |

Burnett SE, Pennisi SV, Thomas PA, van Iersel MW (2005) Controlled drought affects morphology and anatomy of Salvia splendens. Journal of the American Society for Horticultural Science 130, 775–781.

Castelli SL, Grunberg K, M˜noz N, Griffa S, López Colomba E, Ribotta A, Biderbost E, Luna C (2010) Oxidative damage and antioxidant defenses as potential indicators of salt-tolerant Cenchrus ciliaris L. genotypes. Flora 205, 622–626.
Oxidative damage and antioxidant defenses as potential indicators of salt-tolerant Cenchrus ciliaris L. genotypes.Crossref | GoogleScholarGoogle Scholar |

Chen H, Jiang JG (2010) Osmotic adjustment and plant adaptation to environmental changes related to drought and salinity. Environmental Reviews 18, 309–319.
Osmotic adjustment and plant adaptation to environmental changes related to drought and salinity.Crossref | GoogleScholarGoogle Scholar |

Costa A, Drago I, Behera S, Zottini A, Pizzo P (2010) H2O2 in plant peroxisomes. An in vitro analysis uncovers Ca2+ dependant scavenging system. The Plant Journal 62, 760–772.
H2O2 in plant peroxisomes. An in vitro analysis uncovers Ca2+ dependant scavenging system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnslCgsr0%3D&md5=9f8cdb8910ecc8867b4a8a344378d8bbCAS |

Cuin TA, Betts SA, Chalmandrier R, Shabala S (2008) A root’s ability to retain K+ correlates with salt tolerance in wheat. Journal of Experimental Botany 59, 2697–2706.
A root’s ability to retain K+ correlates with salt tolerance in wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXot1WisLg%3D&md5=0c4d3c4e01f0f210bc739feeff029b4fCAS |

Demiral T, Türkan I (2005) Comparative lipid peroxidation, antioxidant defense systems and praline content in roots of two rice cultivars differing in salt tolerance. Environmental and Experimental Botany 53, 247–257.
Comparative lipid peroxidation, antioxidant defense systems and praline content in roots of two rice cultivars differing in salt tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtlWrtb4%3D&md5=cd15fb7079dde5dd0f4954136357c69cCAS |

Desikan R, Cheung MK, Bright J, Henson D, Hancock JT, Neill SJ (2004) ABA, hydrogen peroxide and nitric oxide signaling in stomatal guard cells. Journal of Experimental Botany 55, 205–212.
ABA, hydrogen peroxide and nitric oxide signaling in stomatal guard cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnslaq&md5=6d4bdee3f2314046aad8fc4f88cda504CAS |

DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28, 350–356.
Colorimetric method for determination of sugars and related substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG28XjvFynsg%3D%3D&md5=5b4c1d06b97031738a158663793de8baCAS |

El-Shabrawi H, Kumar B, Kaul T, Reddy MK, Singla-Pareek SL, Sopory SK (2010) Redox homeostasis, antioxidant defense, and methylglyoxal detoxification as markers for salt tolerance in Pokkali rice. Protoplasma 245, 85–96.
Redox homeostasis, antioxidant defense, and methylglyoxal detoxification as markers for salt tolerance in Pokkali rice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVymu7fM&md5=5e1d59e0dbf79579cbf7e6b1191308b4CAS |

Ezzat-Ollah E, Shakiba MR, Mahboob SA, Hoshang A, Mahmood T (2007) Water stress, antioxidant enzyme activity and lipid peroxidation in wheat seedling. Journal of Food Agriculture and Environment 5, 149–153.

Floret C, Pontanier R (1982) L’aridité en Tunisie présaharienne. Travaux et Documents de I’ORSTOM, 150, Paris, p. 544.

Gagneul D, Aïnouche A, Duhazé C, Lugan R, Larher FR, Bouchereau A (2007) A reassessment of the function of the so-called compatible solutes in the halophytic plumbaginaceae Limonium latifolium. Plant Physiology 144, 1598–1611.
A reassessment of the function of the so-called compatible solutes in the halophytic plumbaginaceae Limonium latifolium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1Olsbg%3D&md5=793500f5bc208b926c9048786ae46c9cCAS |

Gharsallah C, Fakhfakh H, Grubb D, Gorsane F (2016) Effect of salt stress on ion concentration, proline content, antioxidant enzyme activities and gene expression in tomato cultivars. AoB Plants 8, plw055
Effect of salt stress on ion concentration, proline content, antioxidant enzyme activities and gene expression in tomato cultivars.Crossref | GoogleScholarGoogle Scholar |

Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress resistance in crop plants. Plant Physiology and Biochemistry 48, 909–930.
Reactive oxygen species and antioxidant machinery in abiotic stress resistance in crop plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlKnu7fF&md5=0bb4cf46349b224aab5e3b008ba65f73CAS |

Gomes MAC, Suzuki1 MSC, Maura T, Cristiane Ferrante (2011) Effect of salt stress on nutrient concentration, photosynthetic pigments, proline and foliar morphology of Salvinia auriculata Aub. Acta Limnologica Brasiliensia 23, 164–176.

Gorai M, Ennajeh M, Khemira H, Neffati M (2011) Influence of NaCl-salinity on growth, photosynthesis, water relations and solute accumulation in Phragmites australis. Acta Physiologiae Plantarum 33, 963–971.
Influence of NaCl-salinity on growth, photosynthesis, water relations and solute accumulation in Phragmites australis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkslWqt78%3D&md5=ca6b4c2e3fd8e2e0802e7848edd0be3eCAS |

Grewal HS (2010) Water uptake, water use efficiency, plant growth and ionic balance of wheat, barley, canola and chickpea plants on a sodic vertosol with variable subsoil NaCl salinity. Agricultural Water Management 97, 148–156.
Water uptake, water use efficiency, plant growth and ionic balance of wheat, barley, canola and chickpea plants on a sodic vertosol with variable subsoil NaCl salinity.Crossref | GoogleScholarGoogle Scholar |

Gulzar S, Khan MA, Ungar IA (2003) Salt tolerance of a coastal salt marsh grass. Communications in Soil Science and Plant Analysis 34, 2595–2605.
Salt tolerance of a coastal salt marsh grass.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotFektLw%3D&md5=7ea62f3a8de34296e0e551ce6be35004CAS |

Hajlaoui H, El Ayebb N, Garrecc JP, Dendend M (2010) Differential effects of salt stress on osmotic adjustment and solutes allocation on the basis of root and leaf tissue senescence of two silage maize (Zea mays L.) varieties. Industrial Crops and Products 31, 122–130.
Differential effects of salt stress on osmotic adjustment and solutes allocation on the basis of root and leaf tissue senescence of two silage maize (Zea mays L.) varieties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVGms7fI&md5=eb49e8ec49c507b98e5d2834ad2f024cCAS |

Hakim MA, Juraimi AS, Hanafi MM, Ismail MR, Rafii MY, Aslani F, Selamat A (2014) The effect of salinity on chlorophyll, proline and mineral nutrients in common weeds of coastal rice fields in Malaysia. Journal of Environmental Biology 35, 855–864.

Hameed M, Ashraf M, Naz N (2009) Anatomical adaptations to salinity in cogon grass (Imperata cylindrica (L.) Raeuschel) from the Salt Range, Pakistan. Plant and Soil 322, 229–238.
Anatomical adaptations to salinity in cogon grass (Imperata cylindrica (L.) Raeuschel) from the Salt Range, Pakistan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVWisrjP&md5=a731c9bcd6828d76b27f67db32f74e27CAS |

Hameed M, Ashraf M, Naz N, Qurainy FA (2010) Anatomical adaptations of Cynodon dactylon (L.) Pers. from the Salt Range Pakistan to salinity stress. I. Root and stem anatomy. Pakistan Journal of Botany 42, 279–289.

Hameed M, Ashraf M, Naz N (2011) Anatomical and physiological characteristics relating to ionic relations in some salt tolerant grasses from the Salt Range, Pakistan. Acta Physiologiae Plantarum 33, 1399–1409.
Anatomical and physiological characteristics relating to ionic relations in some salt tolerant grasses from the Salt Range, Pakistan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlOntb%2FF&md5=431f46887903cf5fb902bf5c472d0a8dCAS |

Hameed M, Nawaz T, Ashraf M, Tufail A, Kanwal H, Ahmad MSA, Ahmad I (2012) Leaf anatomical adaptations of some halophytic and xerophytic sedges of the Punjab. Pakistan Journal of Botany 44, 159–164.

Hameed M, Ashraf M, Naz N, Nawaz T, Batool R, Fatima S, Ahmad F (2014) Physiological adaptative characteristics of Imperata cylindrical for salinity tolerance. Biologia 69, 1148–1156.
Physiological adaptative characteristics of Imperata cylindrical for salinity tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1ChsLfJ&md5=37ee31f19ad838d8b18bed937bed5b39CAS |

Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annual Review of Plant Biology 51, 463–499.
Plant cellular and molecular responses to high salinity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlsVymt7s%3D&md5=5f6e81e6de3d1c7a7c02cfb2bd3cfdafCAS |

Hernández JA, Almansa MS (2002) Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. Physiologia Plantarum 115, 251–257.

Hoagland and Arnon (1950) ‘The water-culture method for growing plants without soil.’ (University of California, College of Agriculture, Agricultural Experiment Station: Berkeley, CA, USA)

Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207, 604–611.
Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhslKisLw%3D&md5=9a4c9d186c925012d77c830702cd4552CAS |

Hoque MA, Banu MNA, Okuma E, Amako K, Nakamura Y, Shimoishi Y, Murata Y (2007) Exogenous proline and glycinebetaine increase NaCl-induced ascorbate glutathione cycle enzyme activities, and proline improves salt tolerance more than glycinebetaine in tobacco Bright Yellow-2 suspension-cultured cells. Journal of Plant Physiology 164, 1457–1468.
Exogenous proline and glycinebetaine increase NaCl-induced ascorbate glutathione cycle enzyme activities, and proline improves salt tolerance more than glycinebetaine in tobacco Bright Yellow-2 suspension-cultured cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlKktL7M&md5=e92173e700c4df1ea58f9dc5b404e985CAS |

Hussain Z, Khattak RA, Irshad M, Eneji AE (2013) Ameliorative effect of potassium sulphate on the growth and chemical composition of wheat (Triticum aestivum L.) in salt-affected soils. Journal of Soil Science and Plant Nutrition 13, 401–415.

Imlay JA (2003) Pathways of oxidative damage. Annual Review of Microbiology 57, 395–418.
Pathways of oxidative damage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptFWlsrw%3D&md5=df79a26c5df8d36d7f179a0d4278735eCAS |

Kamal Uddin M, Juraimi AS, Ismail MR, Hossain MA, Othman R, Abdul Rahim A (2012) Physiological and growth responses of six turfgrass species relative to salinity tolerance. Scientific World Journal 905468

Khan MB, Hussain N, Iqbal M (2001) Effect of water stress on growth and yield components of maize variety YHS 202. Journal of Research Science 12, 15–18.

Koca H, Bor M, Özdemir F, Türkan I (2007) The effect of salinity stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environmental and Experimental Botany 60, 344–351.
The effect of salinity stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntFyhtLw%3D&md5=d143315729362649b880f02cd7c0a7b2CAS |

Kronzucker HJ, Szczerba MW, Schulze LM, Britto DT (2008) Non-reciprocal interactions between K+ and Na+ ions in barley. Journal of Experimental Botany 59, 2793–2801.
Non-reciprocal interactions between K+ and Na+ ions in barley.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXot1Wisbs%3D&md5=2a24093179b358cebec1777f236c2204CAS |

Laouar S (1977) Caractéristiques écophysiologiques et aspects de l’économie de l’eau de l’olivier (Olea europaea L.) et de l’oranger (Citrus sinensis L. Osbeck). Thèse de Doctorat d’Etat Es-Science, Université Paris VII, France.

Li R, Shi F, Fukuda K, Yang Y (2010) Effects of salt and alkali stresses on germination, growth, photosynthesis and ion accumulation in alfalfa (Medicago sativa L.). Soil Science and Plant Nutrition 56, 725–733.
Effects of salt and alkali stresses on germination, growth, photosynthesis and ion accumulation in alfalfa (Medicago sativa L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Ghtb0%3D&md5=9f1b136579966e016ea57b5882e961bfCAS |

Luna CM, García Seffino L, Arias C, Taleisnik E (2000) Oxidative stress indicators as selection tools for salt tolerance in Chloris gayana. Plant Breeding 119, 341–345.
Oxidative stress indicators as selection tools for salt tolerance in Chloris gayana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtFKis7g%3D&md5=f509487e817f3702eef9e6a14be96a43CAS |

Luna CM, De Luca M, Taleisnik E (2002) Physiological causes for decreased productivity under high salinity in Boma, a tetraploid Chloris gayana cultivar. II. Oxidative stress. Australian Journal of Agricultural Research 53, 663–669.
Physiological causes for decreased productivity under high salinity in Boma, a tetraploid Chloris gayana cultivar. II. Oxidative stress.Crossref | GoogleScholarGoogle Scholar |

Mane AV, Karadge BA, Samant JS (2010) Salinity induced changes in photosynthetic pigments and polyphenols of Cymbopogon nardus (L.) Rendle. Journal of Chemical and Pharmaceutical Research 2, 338–347.

Mansour MMF (2000) Nitrogen containing compounds and adaptation of plants to salinity stress. Biologia Plantarum 43, 491–500.
Nitrogen containing compounds and adaptation of plants to salinity stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosFKjurc%3D&md5=3719e39792f8f158943f09276007c6a3CAS |

Marco F, Bitrian M, Carrasco P, Rojam MV, Alcazar R, Antonio FT (2015) Genetic engineering strategies for abiotic stress tolerance in plants. In ‘Plant biology and biotechnology’. pp. 579–610. (Springer: New Delhi)

Maricle BR, Koteyeva NK, Voznesenskaya EV, Thomasson JR, Gerald EE (2009) Diversity in leaf anatomy, and stomatal distribution and conductance, between salt marsh and freshwater species in the C4 genus Spartina (Poaceae). New Phytologist 184, 216–233.
Diversity in leaf anatomy, and stomatal distribution and conductance, between salt marsh and freshwater species in the C4 genus Spartina (Poaceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Kitb%2FM&md5=5a7952bc2e119d505f6fb4692c4e1e1fCAS |

Miller G, Suzuki N, Ciftci-Yilma S, Mittler R (2010) Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant, Cell & Environment 33, 453–467.
Reactive oxygen species homeostasis and signaling during drought and salinity stresses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltV2hur8%3D&md5=ac37013069da4e398cec020641376d49CAS |

Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science 7, 405–410.
Oxidative stress, antioxidants and stress tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XntVWnu7Y%3D&md5=72b5d65ff5dfaea8b5f46673e84bceb8CAS |

Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annual Review of Plant Biology 59, 651–681.
Mechanisms of salinity tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntFaqtrw%3D&md5=dabb8af4a407eaf34e0e4ff798961a24CAS |

Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant & Cell Physiology 22, 867–880.

Nawaz T, Hameed M, Ashraf M, Ahmada MSA, Batoola R, Fatimaa S (2014) Anatomical and physiological adaptations in aquatic ecotypes of Cyperus alopecuroides Rottb. under saline and waterlogged conditions. Aquatic Botany 116, 60–68.
Anatomical and physiological adaptations in aquatic ecotypes of Cyperus alopecuroides Rottb. under saline and waterlogged conditions.Crossref | GoogleScholarGoogle Scholar |

Naz N, Hameed M, Ashraf M, Al-Qurainy F, Arshad M (2010) Relationships between gas-exchange characteristics and stomatal structural modifications in some desert grasses under high salinity. Photosynthetica 48, 446–456.
Relationships between gas-exchange characteristics and stomatal structural modifications in some desert grasses under high salinity.Crossref | GoogleScholarGoogle Scholar |

Naz N, Rafique T, Hameed M, Ashraf M, Batool R, Fatima S (2014) Morpho-anatomical and physiological attributes for salt tolerance in sewan grass (Lasiurus scindicus Henr.) from Cholistan Desert, Pakistan. Acta Physiologiae Plantarum 36, 2959–2974.
Morpho-anatomical and physiological attributes for salt tolerance in sewan grass (Lasiurus scindicus Henr.) from Cholistan Desert, Pakistan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvFeltLc%3D&md5=bdbded0858782dc45438d15883340c66CAS |

Neffati M (1994) Caractérisation morpho-biologique de quelques espèces végétales Nord Africaines: Implication pour l’amélioration pastorale. PhD Thesis, University of Gent, Belgium.

Netondo GW, Onyango JC, Beck E (2004) Crop physiology and metabolism sorghum and salinity II—gas exchange and chlorophyll fluorescence of sorghum under salt stress. Crop Science 44, 806–811.
Crop physiology and metabolism sorghum and salinity II—gas exchange and chlorophyll fluorescence of sorghum under salt stress.Crossref | GoogleScholarGoogle Scholar |

Ouled Belgacem A (2006) Statut écologique, performances biologiques et aptitude a‘ la réinstallation de Stipa lagascae R. & Sch. dans les e’cosyste‘mes de’grade’s des milieux arides tunisiens (Ecological status, biological performance and ability of Stipa lagascae R. &Sch. to be reseeded in degraded arid ecosystems of Tunisia). PhD Thesis, University of Sfax, Tunisia.

Ouled Belgacem A, Neffati M, Papanastasis V, Chaieb M (2006) Effects of seed age and seeding depth on growth of Stipa lagascae R. & Sch. seedlings. Journal of Arid Environments 65, 682–687.
Effects of seed age and seeding depth on growth of Stipa lagascae R. & Sch. seedlings.Crossref | GoogleScholarGoogle Scholar |

Ozgur R, Uzilday B, Sekmen AH, Turkan I (2013) Reactive oxygen species regulation and antioxidant defence in halophytes. Functional Plant Biology 40, 832–847.

Parida AK, Veerabathini SK, Kumari A, Agarwal PK (2016) Physiological, anatomical and metabolic implications of salt tolerance in the halophyte Salvadora persica under hydroponic culture condition. Frontiers in Plant Science 7, 351
Physiological, anatomical and metabolic implications of salt tolerance in the halophyte Salvadora persica under hydroponic culture condition.Crossref | GoogleScholarGoogle Scholar |

Patel PR, Kajal SS, Patel VR, Patel VJ, Khristi SM (2010) Impact of salt stress on nutrient uptake and growth of cowpea. Brazilian Journal of Plant Physiology 22, 43–48.
Impact of salt stress on nutrient uptake and growth of cowpea.Crossref | GoogleScholarGoogle Scholar |

Rashid P, Ahmed A (2011) Anatomical adaptations of Myriostachya wightiana Hook.f. to salt stress. Dhaka University Journal of Biological Sciences 20, 205–208.
Anatomical adaptations of Myriostachya wightiana Hook.f. to salt stress.Crossref | GoogleScholarGoogle Scholar |

Reinoso H, Sosa L, Reginato M, Luna V (2005) Histological alterations induced by sodium sulfate in the vegetative anatomy of Prosopis strombulifera (Lam.) Benth. World Journal of Agriculture Science 1, 109–119.

Sairam RK, Srivastava GC (2002) Changes in antioxidant activity in subcellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Science 162, 897–904.
Changes in antioxidant activity in subcellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XksVSns7Y%3D&md5=9b28b608c80eab121c4dc98f4439a9f9CAS |

Santos VC (2004) Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Scientia Horticulturae 103, 93–99.
Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVSntbzM&md5=aa582734d0ea807083d3030927be33ceCAS |

Schaedle M, Bassham JA (1977) Chloroplast glutathione reductase. Plant Physiology 59, 1011–1012.
Chloroplast glutathione reductase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXktlCqs7c%3D&md5=615214f5648a304b3a078b578145dab7CAS |

Scholander PF, Bradstreet ED, Hemmingsen EA, Hammel HT (1965) Sap pressure in vascular plants negative hydrostatic pressure can be measured in plants. Science 148, 339–346.
Sap pressure in vascular plants negative hydrostatic pressure can be measured in plants.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cvlsVKquw%3D%3D&md5=07d200a7ccfcc0c38a21a429e6bf2f44CAS |

Shi H, Wang Y, Cheng Z, Ye T, Chan Z (2012) Analysis of natural variation in bermudagrass (Cynodon dactylon) reveals physiological responses underlying drought resistance. PLoS One 7, e53422
Analysis of natural variation in bermudagrass (Cynodon dactylon) reveals physiological responses underlying drought resistance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXotVansA%3D%3D&md5=7bdd4a1d0c30ab0d599abfa22743a3d6CAS |

Shi H, Ye T, Chan Z (2013) Comparative proteomic and physiological analyses reveal the protective effect of exogenous polyamines in the bermudagrass (Cynodon dactylon) response to salt and drought stresses. Journal of Proteome Research 12, 4951–4964.
Comparative proteomic and physiological analyses reveal the protective effect of exogenous polyamines in the bermudagrass (Cynodon dactylon) response to salt and drought stresses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Ons77K&md5=56d4e6d25a5a4d0f02e7bd7fa8893657CAS |

Singh M, Jitendra K, Samiksha S, Vijay PS, Sheo MP (2015) Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review. Reviews in Environmental Science and Biotechnology 14, 407–426.
Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1ChtrfE&md5=08867e8a615b32ed10fc5ab7545d3758CAS |

Srivastava LM (2001) ‘Plant growth and development.’ (Academic Press: San Diego, London)

Streeter JG, Lohnes DG, Fioritto RJ (2001) Patterns of pinitol accumulation in soybean plants and relationships to drought tolerance. Plant, Cell & Environment 24, 429–438.
Patterns of pinitol accumulation in soybean plants and relationships to drought tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtFyjtLg%3D&md5=51bc237888dc28830aa176a168259249CAS |

Su J, Ray W (2004) Stress inducible synthesis of proline in transgenic rice confers fast growth under stress conditions than that with constitutive synthesis. Plant Science 166, 941–948.
Stress inducible synthesis of proline in transgenic rice confers fast growth under stress conditions than that with constitutive synthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhs12msbo%3D&md5=7a5b4a53d71a76865cb4bfc030f9be84CAS |

Suárez N, Medina E (2008) Salinity effects on leaf ion composition and salt secretion rate in Avicennia germinans L. Brazilian Journal of Plant Physiology 20, 131–140.
Salinity effects on leaf ion composition and salt secretion rate in Avicennia germinans L.Crossref | GoogleScholarGoogle Scholar |

Sun Y, Kong X, Li C, Liu Y, Ding Z (2015) Potassium retention under salt stress is associated with natural variation in salinity tolerance among Arabidopsis accessions. PLoS One 10, e0124032
Potassium retention under salt stress is associated with natural variation in salinity tolerance among Arabidopsis accessions.Crossref | GoogleScholarGoogle Scholar |

Syvertsen JF, Lloyd J, McConchie C, Kriedemann PE, Farquhar GD (1995) On the relationship between leaf anatomy and CO2 diffusion through the mesophyll of hypostomatous leaves. Plant, Cell & Environment 18, 149–157.
On the relationship between leaf anatomy and CO2 diffusion through the mesophyll of hypostomatous leaves.Crossref | GoogleScholarGoogle Scholar |

Taji T, Ohsumi C, Iuchi S (2002) Important roles of drought and cold inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. The Plant Journal 29, 417–426.
Important roles of drought and cold inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XisVagsrg%3D&md5=b433d1422c9e8922c430ba3ff2500f96CAS |

Thu Hoai NT, Shim IS, Kobayashi K, Kenji U (2003) Accumulation of some nitrogen compounds in response to salt stress and their relationships with salt tolerance in rice (Oryza sativa L.) seedlings. Plant Growth Regulation 41, 159–164.
Accumulation of some nitrogen compounds in response to salt stress and their relationships with salt tolerance in rice (Oryza sativa L.) seedlings.Crossref | GoogleScholarGoogle Scholar |

Torrecillas A, Leon A, Del Amor F, Martinez-Mompean MC (1984) Determinacion rapida de clorofila en discos foliares de limonero. Fruits 39, 617–622.

Troll W, Lindsley J (1955) A photometric method for the determination of proline. The Journal of Biological Chemistry 215, 655–660.

Trovato M, Mattioli R, Costantino P (2008) Multiple roles of proline in plant stress resistance and development. Rendiconti Lincei 19, 325–346.
Multiple roles of proline in plant stress resistance and development.Crossref | GoogleScholarGoogle Scholar |

Visser M, Ouled Belgacem A, Neffati M (2010) Reseeding Mediterranean dryland cereal fallows using Stipa lagascae R. & Sch.: influence of cutting regime during the establishment phase. Grass and Forage Science 65, 23–27.
Reseeding Mediterranean dryland cereal fallows using Stipa lagascae R. & Sch.: influence of cutting regime during the establishment phase.Crossref | GoogleScholarGoogle Scholar |

Wang XS, Han JG (2009) Changes in proline content, activity, and active isoforms of antioxidative enzymes in two alfalfa cultivars under salt stress. Agricultural Sciences in China 8, 431–440.
Changes in proline content, activity, and active isoforms of antioxidative enzymes in two alfalfa cultivars under salt stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtV2isro%3D&md5=20ff2a2fafed1069c9afbf678944410dCAS |

Wankhade SD, Cornejo MJ, Mateu-Andre’s I, Sanz A (2013) Morpho-physiological variations in response to NaCl stress during vegetative and reproductive development of rice. Acta Physiologiae Plantarum 35, 323–333.
Morpho-physiological variations in response to NaCl stress during vegetative and reproductive development of rice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpvFentbo%3D&md5=8f07a9ebd581687391c190e755294a0cCAS |

Wu D, Cai S, Chen M, Ye L, Chen Z, Zhang H, Dai F, Wu F, Zhang G (2013) Tissue metabolic responses to salt stress in wild and cultivated barley. PLoS One 8, e55431
Tissue metabolic responses to salt stress in wild and cultivated barley.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXis1ylsb8%3D&md5=9d1afb20197799f4e49581758f85fad1CAS |

Yang C, Chong J, Kim C, Li C, Shi D, Wang D (2007) Osmotic adjustment and ion balance traits of an alkali resistant halophyte Kochia sieversiana during adaptation to salt and alkali conditions. Plant and Soil 294, 263–276.
Osmotic adjustment and ion balance traits of an alkali resistant halophyte Kochia sieversiana during adaptation to salt and alkali conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltlaru7g%3D&md5=1bf463b41270d7ccd1a6b95df8871870CAS |

Yang C, Wang P, Li C, Shi D, Wang D (2008) Comparison of effects of salt and alkali stresses on the growth and photosynthesis of wheat. Photosynthetica 46, 107–114.
Comparison of effects of salt and alkali stresses on the growth and photosynthesis of wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtlWgt7s%3D&md5=f142491dd4badbb276c78663fa968d3dCAS |

Yazici I, Türkan I, Sekmen AH, Demiral T (2007) Salinity tolerance of purslane (Portulaca oleracea L.) is achieved by enhanced antioxidative system, lower level of lipid peroxidation and proline accumulation. Environmental and Experimental Botany 61, 49–57.
Salinity tolerance of purslane (Portulaca oleracea L.) is achieved by enhanced antioxidative system, lower level of lipid peroxidation and proline accumulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVSjs7nL&md5=874123b9b5900406f2cebe166cbe76a7CAS |

Yeo A (1998) Molecular biology of salt tolerance in the context of whole-plant physiology. Journal of Experimental Botany 49, 915–929.

Yildirim E, Karlidag H, Turan M (2009) Mitigation of salt stress in strawberry by foliar K, Ca and Mg nutrient supply. Plant, Soil and Environment 55, 213–221.

Yunusa IA, Newton PJ (2003) Plants for amelioration of subsoil constraints and hydrological control: the primer-plant concept. Plant and Soil 257, 261–281.
Plants for amelioration of subsoil constraints and hydrological control: the primer-plant concept.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXoslWrtro%3D&md5=48dd51f0384773693a3dd5d1b89f9c59CAS |

Zabala JM, Taleisnik E, Giavedoni JA, Pensiero JF, Schrauf GE (2011) Variability in salt tolerance of native populations of Elymus scabrifolius (Döll) J.H. Hunz from Argentina. Grass and Forage Science 66, 109–122.
Variability in salt tolerance of native populations of Elymus scabrifolius (Döll) J.H. Hunz from Argentina.Crossref | GoogleScholarGoogle Scholar |

Zhang J, Kirkham MB (1994) Drought-stress-induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species. Plant & Cell Physiology 35, 785–791.
Drought-stress-induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXltlShs7o%3D&md5=3a21bb35f2bd0099931c7bdb4b52bb2fCAS |

Zhu JK (2001) Plant salt tolerance. Trends in Plant Science 6, 66–71.
Plant salt tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsFyjtLs%3D&md5=0aa7b2e9ae603347af535fcad10bcdd4CAS |