Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

Identification of candidate genes for resistance to Soybean mosaic virus strain SC3 by using fine mapping and transcriptome analyses

Cui Li A , Karthikeyan Adhimoolam A , Yuan Yuan A , Jinlong Yin A , Rui Ren A , Yongqing Yang A and Haijian Zhi A B
+ Author Affiliations
- Author Affiliations

A National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Weigang 1, Nanjing 210095, P.R. China.

B Corresponding author. Email: zhj@njau.edu.cn

Crop and Pasture Science 68(2) 156-166 https://doi.org/10.1071/CP16353
Submitted: 24 September 2016  Accepted: 12 January 2017   Published: 17 February 2017

Abstract

This study is a continuation of our earlier reports on the identification and mapping of the Soybean mosaic virus (SMV) strain SC3 resistance gene present on chromosome 13 (LG F) of soybean (Glycine max (L.) Merr.). We used a combination of fine mapping and transcriptome sequencing to discover the candidate genes for SMV resistance in Qihuang-1. To fine-map the resistance gene, near-isogenic lines (NILs) from a cross between Qihuang-1 (resistant) and Nannong 1138-2 (susceptible) were genotyped with simple sequence repeats (SSR) and insertion and deletion (indel) markers to identify recombination events. Analysis of plants carrying key recombination events placed the resistance gene to a 180-kb region of the ‘Williams 82’ genome sequence with 17 annotated genes. Transcriptome and quantitative real-time PCR (qRT-PCR) analyses revealed that SMV resistance in Qihuang-1 was probably attributable to the four candidate genes (Glyma13g25920, Glyma13g25950, Glyma13g25970 and Glyma13g26000). The four candidate genes identified in this study can be used in further studies to investigate the role of resistance genes in conferring SC3 resistance in Qihuang-1.

Additional keywords: bulk segregant analysis, quantitative real-time polymerase chain reaction, molecular markers, near-isogenic lines (NILs), transcriptome sequencing, R gene.


References

Ashfield T, Danzer JR, Held D, Clayton K, Keim P, Maroof MAS, Webb DM, Innes RW (1998) Rpg1, a soybean gene effective against races of bacterial blight, maps to a cluster of previously identified disease resistance genes. Theoretical and Applied Genetics 96, 1013–1021.
Rpg1, a soybean gene effective against races of bacterial blight, maps to a cluster of previously identified disease resistance genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXltVOhtLY%3D&md5=0bbeff65f1ab53f2d93be0e98b5aa0d2CAS |

Ashfield T, Bocian A, Held D, Henk AD, Marek LF, Danesh D, Penuela S, Meksem K, Lightfoot DA, Young ND, Shoemaker RC, Innes RW (2003) Genetic and physical localization of the soybean Rpg1-b disease resistance gene reveals a complex locus containing several tightly linked families of NBS-LRR genes. Molecular Plant-Microbe Interactions 16, 817–826.
Genetic and physical localization of the soybean Rpg1-b disease resistance gene reveals a complex locus containing several tightly linked families of NBS-LRR genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmvVert7g%3D&md5=61b8ce9250f4542ae78c51a91f00a143CAS |

Bai L, Li HC, Ma Y, Wang DG, Liu N, Zhi HJ (2009) Inheritance and gene mapping of resistance to soybean mosaic virus strain SC-11 in soybean. Soybean Science 28, 1–6.

Baker B, Zambryski P, Staskawicz B, Dinesh-Kumar SP (1997) Signaling in plant-microbe interactions. Science 276, 726–733.
Signaling in plant-microbe interactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXivFOltLg%3D&md5=a28189989c1ca4c3ca0775fceb97cae9CAS |

Chu MG, Song T, Falk KC, Zhang XG, Liu XJ, Chang A, Lahlali R, McGregor L, Gossen BD, Peng G, Yu FQ (2014) Fine mapping of Rcr1 and analyses of its effect on transcriptome patterns during infection by Plasmodiophora brassicae. BMC Genomics 15, 1166
Fine mapping of Rcr1 and analyses of its effect on transcriptome patterns during infection by Plasmodiophora brassicae.Crossref | GoogleScholarGoogle Scholar |

DeYoung BJ, Innes RW (2006) Plant NBS-LRR proteins in pathogen sensing and host defense. Nature Immunology 7, 1243–1249.
Plant NBS-LRR proteins in pathogen sensing and host defense.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Srur7I&md5=62e0fd3e91a52ffb04886707a23e36ddCAS |

Diers BW, Mansur L, Imsande J, Shoemaker RC (1992) Mapping phytophthora resistance loci in soybean with restriction fragment length polymorphism markers. Crop Science 32, 377–383.
Mapping phytophthora resistance loci in soybean with restriction fragment length polymorphism markers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXjtlOlug%3D%3D&md5=5f2c8788929e3f63bc970c2943a959aaCAS |

Dodds PN, Lawrence GJ, Ellis JG (2001) Six amino acid changes confined to the leucine-rich repeat β-strand/β-turn motif determine the difference between the P and P2 rust resistance specificities in flax. The Plant Cell 13, 163–178.

Doyle JJ (1990) Isolation of plant DNA from fresh tissue. Focus 12, 13–15.

Fehr WR (1977) Stages of soybean development. Kenya Soil Survey, 1977.

Feng DS, Li Y, Wang HG, Li XF, Gao JR (2009) Isolation and evolution mode analysis of NBS-LRR resistance gene analogs from hexaploid wheat. Plant Molecular Biology Reporter 27, 266–274.
Isolation and evolution mode analysis of NBS-LRR resistance gene analogs from hexaploid wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVOntLfE&md5=4f3adc81cffbb8cfce07e9341cd0b604CAS |

Gao H, Bhattacharyya MK (2008) The soybean–Phytophthora resistance locus Rps1-k encompasses coiled coil-nucleotide binding-leucine rich repeat-like genes and repetitive sequences. BMC Plant Biology 8, 29
The soybean–Phytophthora resistance locus Rps1-k encompasses coiled coil-nucleotide binding-leucine rich repeat-like genes and repetitive sequences.Crossref | GoogleScholarGoogle Scholar |

Gassmann W, Hinsch ME, Staskawicz BJ (1999) The Arabidopsis RPS4 bacterial-resistance gene is a member of the TIR-NBS-LRR family of disease-resistance genes. The Plant Journal 20, 265–277.
The Arabidopsis RPS4 bacterial-resistance gene is a member of the TIR-NBS-LRR family of disease-resistance genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsF2ksQ%3D%3D&md5=f124d068df351282d210ca026378513cCAS |

Gore MA, Hayes AJ, Jeong SC, Yue YG, Buss GR, Maroof MAS (2002) Mapping tightly linked genes controlling potyvirus infection at the Rsv1 and Rpv1 region in soybean. Genome 45, 592–599.
Mapping tightly linked genes controlling potyvirus infection at the Rsv1 and Rpv1 region in soybean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xks1yju7o%3D&md5=da98b113bf46c1561491c496f1d39a73CAS |

Guo DQ, Zhi HJ, Wang YW, Gai JY, Zhou XA, Yang CL, Li K, Li HC (2005) Identification and distribution of soybean mosaic virus strains in the middle and northern of Huang Huai region of China. Chinese Journal of Oil Crop Sciences 27, 64–68.

Hayes AJ, Ma GR, Buss GR, Maroof MAS (2000) Molecular marker mapping of RSV4, a gene conferring resistance to all known strains of soybean mosaic virus. Crop Science 40, 1434–1437.
Molecular marker mapping of RSV4, a gene conferring resistance to all known strains of soybean mosaic virus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXns1Gqt74%3D&md5=ea1fddf1d514e95c67ad3b4c22d9f3b4CAS |

Hayes AJ, Jeong SC, Gore MA, Yu YG, Buss GR, Tolin SA, Maroof MAS (2004) Recombination within a nucleotide-binding-site/leucine-rich-repeat gene cluster produces new variants conditioning resistance to soybean mosaic virus in soybeans. Genetics 166, 493–503.
Recombination within a nucleotide-binding-site/leucine-rich-repeat gene cluster produces new variants conditioning resistance to soybean mosaic virus in soybeans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXivFKjur4%3D&md5=1ff3abce0f277f0cdd5c9b83b8c552acCAS |

Hill CB, Chirumamilla A, Hartman GL (2012) Resistance and virulence in the soybean–Aphis glycines interaction. Euphytica 186, 635–646.
Resistance and virulence in the soybean–Aphis glycines interaction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFWiu7bJ&md5=9cfb577b3d473e6a90c6142d85c75258CAS |

Huang SN, Liu ZY, Yao RP, Li DY, Zhang T, Li X, Hou L, Wang YH, Tan XY, Feng H (2016) Candidate gene prediction for a petal degeneration mutant, pdm, of the Chinese cabbage (Brassica campestris ssp. pekinensis) by using fine mapping and transcriptome analysis. Molecular Breeding 36, 26
Candidate gene prediction for a petal degeneration mutant, pdm, of the Chinese cabbage (Brassica campestris ssp. pekinensis) by using fine mapping and transcriptome analysis.Crossref | GoogleScholarGoogle Scholar |

Joshi T, Patil K, Fitzpatrick MR, Franklin LD, Yao QM, Cook JR, Wang Z, Libault M, Brechenmacher L, Valliyodan B, Wu XL, Cheng JL, Stacey G, Nguyen HT, Xu D (2012) Soybean Knowledge Base (SoyKB): a web resource for soybean translational genomics. BMC Genomics 13, S15
Soybean Knowledge Base (SoyKB): a web resource for soybean translational genomics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptlSmtb8%3D&md5=129e48d458f659c5914e04dde6248fe5CAS |

Joshi T, Fitzpatrick MR, Chen SY, Liu Y, Zhang HX, Endacott RZ, Gaudiello EC, Stacey G, Nguyen HT, Xu D (2014) Soybean knowledge base (SoyKB): a web resource for integration of soybean translational genomics and molecular breeding. Nucleic Acids Research 42, D1245–D1252.
Soybean knowledge base (SoyKB): a web resource for integration of soybean translational genomics and molecular breeding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXos1ek&md5=86622a819bc085d67e35295f65fb7b5bCAS |

Jun TH, Mian MAR, Michel AP (2012) Genetic mapping revealed two loci for soybean aphid resistance in PI 567301B. Theoretical and Applied Genetics 124, 13–22.
Genetic mapping revealed two loci for soybean aphid resistance in PI 567301B.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XksVSrsg%3D%3D&md5=e3f84387a24192c5c02f67991532b231CAS |

Kang YJ, Kim KH, Shim S, Yoon MY, Sun S, Kim MY, Van K, Lee SH (2012) Genome-wide mapping of NBS-LRR genes and their association with disease resistance in soybean. BMC Plant Biology 12, 139
Genome-wide mapping of NBS-LRR genes and their association with disease resistance in soybean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlGitLw%3D&md5=6949562baf092155090b323e8a75d2fbCAS |

Lawrence GJ, Finnegan EJ, Ayliffe MA, Ellis JG (1995) The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene Rps2 and the tobacco viral resistance gene N. The Plant Cell 7, 1195–1206.
The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene Rps2 and the tobacco viral resistance gene N.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnvVWnurw%3D&md5=19e777771790d1f1e5d0ddf9d5f8c270CAS |

Li Q, Wan JM (2005) SSR Hunter: development of local searching software for SSR sites. Yi Chuan 27, 808–810.

Li HC, Zhi HJ, Gai JY, Guo DQ, Wang YW, Li K, Bai L, Yang H (2006) Inheritance and gene mapping of resistance to soybean mosaic virus strain SC14 in soybean. Journal of Integrative Plant Biology 48, 1466–1472.
Inheritance and gene mapping of resistance to soybean mosaic virus strain SC14 in soybean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtlylsQ%3D%3D&md5=7ff72f13257ca8a26479dfa657041850CAS |

Li K, Yang QH, Zhi HJ, Gai JY (2010) Identification and distribution of soybean mosaic virus strains in southern China. Plant Disease 94, 351–357.
Identification and distribution of soybean mosaic virus strains in southern China.Crossref | GoogleScholarGoogle Scholar |

Liao L, Istvan R, Chen PY, Gleen B, Tolin S, Yang ZY, Dong ZM, Wang SM (2010) Evaluation of resistance to soybean mosaic virus (SMV) in soybean differentials and other varieties from China. Soybean Science 6, 982–989.

Liao L, Chen P, Rajcan I, Buss GR, Tolin SA (2011) Genetic analysis of “8101” soybean containing three genes for resistance to soybean mosaic virus. Crop Science 51, 503–511.
Genetic analysis of “8101” soybean containing three genes for resistance to soybean mosaic virus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktlegurw%3D&md5=e8c5e262b6b530735e0d231fdc7cc769CAS |

Liu XQ, Lin F, Wang L, Pan QH (2007) The in silico map-based cloning of Pi36, a rice coiled-coil-nucleotide-binding site-leucine-rich repeat gene that confers race-specific resistance to the blast fungus. Genetics 176, 2541–2549.
The in silico map-based cloning of Pi36, a rice coiled-coil-nucleotide-binding site-leucine-rich repeat gene that confers race-specific resistance to the blast fungus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFGmsrzO&md5=7c90e4feff1fcf65e278c5f7707a403aCAS |

Ma Y, Wang DG, Li HC, Zheng GJ, Yang YQ, Li HW, Zhi HJ (2011) Fine mapping of the RSC14Q locus for resistance to soybean mosaic virus in soybean. Euphytica 181, 127–135.
Fine mapping of the RSC14Q locus for resistance to soybean mosaic virus in soybean.Crossref | GoogleScholarGoogle Scholar |

Maroof MAS, Tucker DM, Skoneczka JA, Bowman BC, Tripathy S, Tolin SA (2010) Fine mapping and candidate gene discovery of the soybean mosaic virus resistance gene, Rsv4. The Plant Genome 3, 14–22.
Fine mapping and candidate gene discovery of the soybean mosaic virus resistance gene, Rsv4.Crossref | GoogleScholarGoogle Scholar |

Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proceedings of the National Academy of Sciences of the United States of America 88, 9828–9832.
Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xhs1emtw%3D%3D&md5=94e1ed3986995e318bca51da396cc131CAS |

Mudge J, Cannon SB, Kalo P, Oldroyd GE, Roe BA, Town CD, Young ND (2005) Highly syntenic regions in the genomes of soybean, Medicago truncatula, and Arabidopsis thaliana. BMC Plant Biology 5, 15
Highly syntenic regions in the genomes of soybean, Medicago truncatula, and Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar |

Pachauri V, Mishra V, Mishra P, Singh AK, Singh S, Singh R, Singh NK (2014) Identification of candidate genes for rice grain aroma by combining QTL mapping and transcriptome profiling approaches. Cereal Research Communications 42, 376–388.
Identification of candidate genes for rice grain aroma by combining QTL mapping and transcriptome profiling approaches.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVOls7nJ&md5=6122b33ec8b05acc41f8587f954b87a1CAS |

Pandit A, Rai V, Bal S, Sinha S, Kumar V, Chauhan M, Gautam RK, Singh R, Sharma PC, Singh AK, Gaikwad K, Sharma TR, Mohapatra T, Singh NK (2010) Combining QTL mapping and transcriptome profiling of bulked RILs for identification of functional polymorphism for salt tolerance genes in rice (Oryza sativa L.). Molecular Genetics and Genomics 284, 121–136.
Combining QTL mapping and transcriptome profiling of bulked RILs for identification of functional polymorphism for salt tolerance genes in rice (Oryza sativa L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXoslait7c%3D&md5=e3e05e3e3281aec7a412d02fedb02f93CAS |

Pham AT, McNally K, Abdel-Haleem H, Roger Boerma H, Li Z (2013) Fine mapping and identification of candidate genes controlling the resistance to southern root-knot nematode in PI 96354. Theoretical and Applied Genetics 126, 1825–1838.
Fine mapping and identification of candidate genes controlling the resistance to southern root-knot nematode in PI 96354.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVahurzM&md5=078a4451bb37efdf04776fe666620e91CAS |

Pham AT, Harris DK, Buck J, Hoskins A, Serrano J, Abdel-Haleem H, Cregan P, Song QJ, Boerma HR, Li ZL (2015) Fine mapping and characterization of candidate genes that control resistance to Cercospora sojina K. Hara in two soybean germplasm accessions. PLoS One 10, e0126753
Fine mapping and characterization of candidate genes that control resistance to Cercospora sojina K. Hara in two soybean germplasm accessions.Crossref | GoogleScholarGoogle Scholar |

Rosso ML, Rupe JC, Chen PY, Mozzoni LA (2008) Inheritance and genetic mapping of resistance to pythium damping-off caused by Pythium aphanidermatum in ‘Archer’ soybean. Crop Science 48, 2215–2222.
Inheritance and genetic mapping of resistance to pythium damping-off caused by Pythium aphanidermatum in ‘Archer’ soybean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmt1ygsg%3D%3D&md5=ba884ae1f747c5e470872d8de81e796dCAS |

Rouf Mian MA, Kang ST, Beil SE, Hammond RB (2008) Genetic linkage mapping of the soybean aphid resistance gene in PI 243540. Theoretical and Applied Genetics 117, 955–962.
Genetic linkage mapping of the soybean aphid resistance gene in PI 243540.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFWls73P&md5=57d94cd3d13ca8d44b8f0488d0614935CAS |

Schmutz J, Cannon SB, Schlueter J, Ma JX, Mitros T, Nelson W, Hyten DL, Song QJ, Thelen JJ, Cheng JL, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu SQ, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du JC, Tian ZX, Zhu LC, Gill N, Joshi T, Libault M, Sethuraman A, Zhang XC, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010) Genome sequence of the palaeopolyploid soybean. Nature 463, 178–183.
Genome sequence of the palaeopolyploid soybean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntVClsQ%3D%3D&md5=9863ad42d1783d54d7ff76277cc23f3eCAS |

Sela H, Spiridon LN, Petrescu AJ, Akerman M, Mandel-Gutfreund Y, Nevo E, Loutre C, Keller B, Schulman AH, Fahima T (2012) Ancient diversity of splicing motifs and protein surfaces in the wild emmer wheat (Triticum dicoccoides) LR10(LR10) coiled coil (CC) and leucine-rich repeat (LRR) domains. Molecular Plant Pathology 13, 276–287.
Ancient diversity of splicing motifs and protein surfaces in the wild emmer wheat (Triticum dicoccoides) LR10(LR10) coiled coil (CC) and leucine-rich repeat (LRR) domains.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvFGrsL4%3D&md5=6483577f934bc8fbb07dbef38d835a03CAS |

Shi AN, Chen PY, Li DX, Zheng CM, Hou AF, Zhang B (2008a) Genetic confirmation of 2 independent genes for resistance to soybean mosaic virus in J05 soybean using SSR markers. The Journal of Heredity 99, 598–603.
Genetic confirmation of 2 independent genes for resistance to soybean mosaic virus in J05 soybean using SSR markers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1OisrvK&md5=f5de76f49cd37e0184588a78ca0c612eCAS |

Shi AN, Chen PY, Zheng CN, Hou AF, Zhang B (2008b) A PCR-based marker for the Rsv1 locus conferring resistance to soybean mosaic virus. Crop Science 48, 262–268.
A PCR-based marker for the Rsv1 locus conferring resistance to soybean mosaic virus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXit12ht78%3D&md5=18e528ca3798a686997a3d89c1dd63b9CAS |

Song QJ, Jia GF, Zhu YL, Grant D, Nelson RT, Hwang EY, Hyten DL, Cregan PB (2010) Abundance of SSR motifs and development of candidate polymorphic SSR markers (BARCSOYSSR_1.0) in soybean. Crop Science 50, 1950–1960.
Abundance of SSR motifs and development of candidate polymorphic SSR markers (BARCSOYSSR_1.0) in soybean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1OmurzI&md5=40761f3d9bb553d52a7207cd328df42aCAS |

Suh SJ, Bowman BC, Jeong N, Yang K, Kastl C, Tolin SA, Maroof MAS, Jeong SC (2011) The Rsv3 locus conferring resistance to soybean mosaic virus is associated with a cluster of coiled-coil nucleotide-binding leucine-rich repeat genes. The Plant Genome 4, 55–64.
The Rsv3 locus conferring resistance to soybean mosaic virus is associated with a cluster of coiled-coil nucleotide-binding leucine-rich repeat genes.Crossref | GoogleScholarGoogle Scholar |

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 2731–2739.

van der Biezen EA, Freddie CT, Kahn K, Parker JE, Jones JDG (2002) Arabidopsis RPP4 is a member of the RPP5 multigene family of TIR-NB-LRR genes and confers downy mildew resistance through multiple signalling components. The Plant Journal 29, 439–451.
Arabidopsis RPP4 is a member of the RPP5 multigene family of TIR-NB-LRR genes and confers downy mildew resistance through multiple signalling components.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XisVagsrY%3D&md5=770f712d8f187de3766b3057e946c663CAS |

Wang DG, Ma Y, Yang YQ, Liu N, Li CY, Song YP, Zhi HJ (2011) Fine mapping and analyses of RSC8 resistance candidate genes to soybean mosaic virus in soybean. Theoretical and Applied Genetics 122, 555–565.
Fine mapping and analyses of RSC8 resistance candidate genes to soybean mosaic virus in soybean.Crossref | GoogleScholarGoogle Scholar |

Wang DG, Li K, Huang ZP, Hu G, Zhang L (2014) Disease resistance evaluation of soybean lines in Huang-Huai-Hai. Plant Protection 40, 144–149.
Disease resistance evaluation of soybean lines in Huang-Huai-Hai.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXnslGhu7s%3D&md5=36b0ac3623ad5bc56ed6540e1956585bCAS |

Wei LJ, Jian HG, Lu K, Filardo F, Yin NW, Liu LZ, Qu CM, Li W, Du H, Li JN (2016) Genome-wide association analysis and differential expression analysis of resistance to Sclerotinia stem rot in Brassica napus. Plant Biotechnology Journal 14, 1368–1380.
Genome-wide association analysis and differential expression analysis of resistance to Sclerotinia stem rot in Brassica napus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xns1aksb4%3D&md5=6866dcfcb68899094213544b8a13ba2dCAS |

Wrather JA, Anderson TR, Arsyad DM, Tan Y, Ploper LD, Porta-Puglia A, Ram HH, Yorinori JT (2001) Soybean disease loss estimates for the top ten soybean-producing countries in 1998. Canadian Journal of Plant Pathology 23, 115–121.
Soybean disease loss estimates for the top ten soybean-producing countries in 1998.Crossref | GoogleScholarGoogle Scholar |

Yang QH, Gai JY (2011) Identification, inheritance and gene mapping of resistance to a virulent Soybean mosaic virus strain SC15 in soybean. Plant Breeding 130, 128–132.
Identification, inheritance and gene mapping of resistance to a virulent Soybean mosaic virus strain SC15 in soybean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVShs7g%3D&md5=2d6f9ab76efa15357836bcb2713ab26eCAS |

Yoshimura S, Yamanouchi U, Katayose Y, Toki S, Wang ZX, Kono I, Kurata N, Yano M, Iwata N, Sasaki T (1998) Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proceedings of the National Academy of Sciences of the United States of America 95, 1663–1668.
Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXht1Wqtbs%3D&md5=f765707d4a3b5e7a3952a8a07b31937fCAS |

Zhang J, Mason AS, Wu J, Liu S, Zhang XC, Luo T, Redden R, Batley J, Hu LY, Yan GJ (2015) Identification of putative candidate genes for water stress tolerance in canola (Brassica napus). Frontiers in Plant Science 6, 1058
Identification of putative candidate genes for water stress tolerance in canola (Brassica napus).Crossref | GoogleScholarGoogle Scholar |

Zhao BY, Ardales EY, Raymundo A, Bai JF, Trick HN, Leach JE, Hulbert SH (2004) The avrRxo1 gene from the rice pathogen Xanthomonas oryzae pv. oryzicola confers a nonhost defense reaction on maize with resistance gene Rxo1. Molecular Plant-Microbe Interactions 17, 771–779.
The avrRxo1 gene from the rice pathogen Xanthomonas oryzae pv. oryzicola confers a nonhost defense reaction on maize with resistance gene Rxo1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltFOhtrs%3D&md5=51f3c789d22ea99d66633b7335cc36feCAS |

Zheng GJ, Yang YQ, Ma Y, Yang XF, Chen SY, Ren R, Wang DG, Yang ZL, Zhi HJ (2014) Fine mapping and candidate gene analysis of resistance gene RSC3Q to soybean mosaic virus in Qihuang 1. Journal of Integrative Agriculture 13, 2608–2615.
Fine mapping and candidate gene analysis of resistance gene RSC3Q to soybean mosaic virus in Qihuang 1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXksF2gsr8%3D&md5=a8fd117c07552b5bb7d1649590f85c40CAS |