Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

Phylogenetic effects on shoot magnesium concentration

Philip J. White A B E , Helen C. Bowen C , Emily Farley C , Emma K. Shaw A , Jacqueline A. Thompson A , Gladys Wright A and Martin R. Broadley D
+ Author Affiliations
- Author Affiliations

A The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK.

B Distinguished Scientist Fellowship Program, King Saud University, Riyadh, Saudi Arabia.

C Warwick HRI, University of Warwick, Wellesbourne, Warwick CV35 9EF, UK.

D Plant and Crop Sciences Division, University of Nottingham, Sutton Bonington, Loughborough LE12 5RD, UK.

E Corresponding author. Email: philip.white@hutton.ac.uk

Crop and Pasture Science 66(12) 1241-1248 https://doi.org/10.1071/CP14228
Submitted: 14 August 2014  Accepted: 3 February 2015   Published: 10 July 2015

Abstract

Insufficient calcium (Ca) or magnesium (Mg) in the diets of humans and animals has negative effects on health. Knowledge of the concentrations of Ca and Mg in edible crops can help inform the formulation of appropriate diets. There are large differences in shoot concentrations of both Ca ([Ca]shoot) and Mg ([Mg]shoot) between angiosperm orders. For example, relative to other angiosperms, commelinid monocot species generally have lower [Ca]shoot and [Mg]shoot; species from the Cucurbitales, Malvales and Brassicales generally have higher [Ca]shoot and [Mg]shoot; and species from the Oxalidales and Caryophyllales generally have higher [Mg]shoot but similar [Ca]shoot, which results in higher [Mg]shoot/[Ca]shoot quotients. In this paper the evolution of the combined traits of high [Mg]shoot and high [Mg]shoot/[Ca]shoot quotient in the Caryophyllales was resolved at the family level. All Caryophyllales families had high mean [Mg]shoot and [Mg]shoot/[Ca]shoot quotients, suggesting that both of these traits evolved in an ancient ancestor of all Caryophyllales families.

Additional keywords: biofortification, grass tetany, ionomics, livestock, mineral.


References

Angiosperm Phylogeny Group [APG III] (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society 161, 105–121.
An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III.Crossref | GoogleScholarGoogle Scholar |

Bo S, Pisu E (2008) Role of dietary magnesium in cardiovascular diseases prevention, insulin sensitivity and diabetes. Current Opinion in Lipidology 19, 50–56.
Role of dietary magnesium in cardiovascular diseases prevention, insulin sensitivity and diabetes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmt1ymsw%3D%3D&md5=e9ec7ab9bb21ea291700fa40d655cdacCAS | 18196987PubMed |

Broadley MR, White PJ (2010) Eats roots and leaves. Can edible horticultural crops address dietary calcium, magnesium and potassium deficiencies? The Proceedings of the Nutrition Society 69, 601–612.
Eats roots and leaves. Can edible horticultural crops address dietary calcium, magnesium and potassium deficiencies?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht12qu7%2FF&md5=df59f61bb46b88f2c52017e0e9ae2567CAS | 20509990PubMed |

Broadley MR, White PJ (2012) Some elements are more equal than others: soil-to-plant transfer of radiocaesium and radiostrontium, revisited. Plant and Soil 355, 23–27.
Some elements are more equal than others: soil-to-plant transfer of radiocaesium and radiostrontium, revisited.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xns1ektrg%3D&md5=b5d213a60f8e4f1a7fe9fe602005cfe3CAS |

Broadley MR, Bowen HC, Cotterill HL, Hammond JP, Meacham MC, Mead A, White PJ (2003) Variation in the shoot calcium content of angiosperms. Journal of Experimental Botany 54, 1431–1446.
Variation in the shoot calcium content of angiosperms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjt1Ogs7k%3D&md5=cda0fd0584b1a0df6fab50950610481aCAS | 12709490PubMed |

Broadley MR, Bowen HC, Cotterill HL, Hammond JP, Meacham MC, Mead A, White PJ (2004) Phylogenetic variation in the shoot mineral concentration of angiosperms. Journal of Experimental Botany 55, 321–336.
Phylogenetic variation in the shoot mineral concentration of angiosperms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXms1egtA%3D%3D&md5=7e1ae3556b1532d51911b0a9ac074633CAS | 14739259PubMed |

Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytologist 173, 677–702.
Zinc in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvFGgsL8%3D&md5=b8e3fb5f7694848234b0aca631692697CAS | 17286818PubMed |

Cappa JJ, Pilon-Smits EAH (2014) Evolutionary aspects of elemental hyperaccumulation. Planta 239, 267–275.
Evolutionary aspects of elemental hyperaccumulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1ynsbvP&md5=30c879e8426772b515a1e550b0012a23CAS | 24463931PubMed |

Crawley SS, Hilu KW (2012) Caryophyllales: Evaluating phylogenetic signal in trnK intron versus matK. Journal of Systematics and Evolution 50, 387–410.
Caryophyllales: Evaluating phylogenetic signal in trnK intron versus matK.Crossref | GoogleScholarGoogle Scholar |

Cuénoud P, Savolainen V, Chatrou LW, Powell M, Grayer RJ, Chase MW (2002) Molecular phylogenetics of Caryophyllales based on nuclear 18S rDNA and plastid rbcL, atpB, and matK DNA sequences. American Journal of Botany 89, 132–144.
Molecular phylogenetics of Caryophyllales based on nuclear 18S rDNA and plastid rbcL, atpB, and matK DNA sequences.Crossref | GoogleScholarGoogle Scholar | 21669721PubMed |

Ehrendorfer F (1976) Closing remarks: systematics and evolution of centrospermous families. Plant Systematics and Evolution 126, 99–106.
Closing remarks: systematics and evolution of centrospermous families.Crossref | GoogleScholarGoogle Scholar |

Fyllas NM, Patino S, Baker TR, Bielefeld Nardoto G, Martinelli LA, Quesada CA, Paiva R, Schwarz M, Horna V, Mercado LM, Santos A, Arroyo L, Jimenez EM, Luizão FJ, Neill DA, Silva N, Prieto A, Rudas A, Silviera M, Vieira ICG, Lopez-Gonzalez G, Malhi Y, Phillips OL, Lloyd J (2009) Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate. Biogeosciences 6, 2677–2708.
Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate.Crossref | GoogleScholarGoogle Scholar |

Garten CT (1976) Correlations between concentrations of elements in plants. Nature 261, 686–688.
Correlations between concentrations of elements in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28Xltl2ks74%3D&md5=2e2503a7414132a2f244e1d10d1829f3CAS |

Graham NS, Hammond JP, Lysenko A, Mayes S, Ó Lochlainn S, Blasco B, Bowen HC, Rawlings C, Rios JJ, Welham S, Carion PWC, Dupuy LX, King GJ, White PJ, Broadley MR (2014) Genetical and comparative genomics of Brassica under altered Ca supply identifies Arabidopsis Ca-transporter orthologs. The Plant Cell 26, 2818–2830.
Genetical and comparative genomics of Brassica under altered Ca supply identifies Arabidopsis Ca-transporter orthologs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFaks7zO&md5=c0117000c0d67345a845dc2f72d1b800CAS | 25082855PubMed |

Grime JP (2001) ‘Plant strategies, vegetation processes, and ecosystem properties.’ 2nd edn (Wiley: Chichester, UK)

Hawkesford M, Horst W, Kichey T, Lambers H, Schjoerring J, Skrumsager Møller I, White P (2012) Functions of macronutrients. In ‘Marschner’s mineral nutrition of higher plants’. 3rd edn (Ed. P Marschner) pp. 135–189. (Academic Press: London)

Hides DH, Thomas TA (1981) Variation in the magnesium content of grasses and its improvement by selection. Journal of the Science of Food and Agriculture 32, 990–991.

Joy EJM, Ander EL, Young SD, Black CR, Watts MJ, Chilimba ADC, Chilimba B, Siyame EWP, Kalimbira AA, Hurst R, Fairweather-Tait SJ, Stein AJ, Gibson RS, White PJ, Broadley MR (2014) Dietary mineral supplies in Africa. Physiologia Plantarum 151, 208–229.
Dietary mineral supplies in Africa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXps1Ojtb8%3D&md5=4187ecf74a9bd1b111043fd26766b47dCAS |

Karley AJ, White PJ (2009) Moving cationic minerals to edible tissues: Potassium, magnesium, calcium. Current Opinion in Plant Biology 12, 291–298.
Moving cationic minerals to edible tissues: Potassium, magnesium, calcium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsFSjur8%3D&md5=09cd409e8fd3988317362404829f6a25CAS | 19481494PubMed |

Kinzel H (1982) ‘Pflanzenökologie und Mineralstoffwechsel.’ (Ulmer: Stuttgart, Germany)

Kisters K, Gröber U (2013) Magnesium in health and disease. Plant and Soil 368, 155–165.
Magnesium in health and disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmsVejtb8%3D&md5=7fd1d2dcbe05a9a36a4afebdf687460fCAS |

Krämer U (2010) Metal hyperaccumulation in plants. Annual Review of Plant Biology 61, 517–534.
Metal hyperaccumulation in plants.Crossref | GoogleScholarGoogle Scholar | 20192749PubMed |

Osaki M, Yamada S, Ishizawa T, Watanabe T, Shinano T, Tuah SJ, Urayama M (2003) Mineral characteristics of leaves of plants from different phylogeny grown in various soil types in the temperate region. Plant Foods for Human Nutrition 58, 117–137.
Mineral characteristics of leaves of plants from different phylogeny grown in various soil types in the temperate region.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvVCksL0%3D&md5=dca8fd80bd4b3496e0107eda7d48ee3aCAS | 12906351PubMed |

Rosanoff A (2013) Changing crop magnesium concentrations: impact on human health. Plant and Soil 368, 139–153.
Changing crop magnesium concentrations: impact on human health.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXps1Ght7o%3D&md5=06cb6df84a803f2e8119cb8d7c004048CAS |

Schonewille JT (2013) Magnesium in dairy cow nutrition: an overview. Plant and Soil 368, 167–178.
Magnesium in dairy cow nutrition: an overview.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXps1GgsLo%3D&md5=b538cee8bff39b3934b6319aa4b88a5bCAS |

Sleper DA, Vogel KP, Asay KH, Mayland HF (1989) Using plant-breeding and genetics to overcome the incidence of grass tetany. Journal of Animal Science 67, 3456–3462.

Suttle NF (2010) ‘Mineral nutrition of livestock.’ 4th edn (CABI: Wallingford, UK)

Thacher TD, Fischer PR, Strand MA, Pettifor JM (2006) Nutritional rickets around the world: causes and future directions. Annals of Tropical Paediatrics 26, 1–16.
Nutritional rickets around the world: causes and future directions.Crossref | GoogleScholarGoogle Scholar | 16494699PubMed |

Theobald HE (2005) Dietary calcium and health. Nutrition Bulletin 30, 237–277.
Dietary calcium and health.Crossref | GoogleScholarGoogle Scholar |

Thompson K, Parkinson JA, Band SR, Spencer RE (1997) A comparative study of leaf nutrient concentrations in a regional herbaceous flora. New Phytologist 136, 679–689.
A comparative study of leaf nutrient concentrations in a regional herbaceous flora.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmtlyltbY%3D&md5=e8bf202721ef7c7a893e5e70b1712838CAS |

Watanabe T, Broadley MR, Jansen S, White PJ, Takada J, Satake K, Takamatsu T, Tuah SJ, Osaki M (2007) Evolutionary control of leaf element composition in plants. New Phytologist 174, 516–523.
Evolutionary control of leaf element composition in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsFOktLs%3D&md5=3c69126d6f5b0e2009d6321b1607d6a7CAS | 17447908PubMed |

Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. Journal of Experimental Botany 55, 353–364.
Breeding for micronutrients in staple food crops from a human nutrition perspective.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXms1emuw%3D%3D&md5=536a8a97fd3977fab0cea6a777aafb85CAS | 14739261PubMed |

White PJ (2012) Heavy metal toxicity in plants. In ‘Plant stress physiology’. (Ed. S Shabala) pp. 210–237. (CABI: Wallingford, UK)

White PJ (2015) Calcium. In ‘Handbook of plant nutrition’. 2nd edn (Eds AV Barker, DJ Pilbeam) pp. 165–198. (CRC Press: Boca Raton, FL, USA)

White PJ, Broadley MR (2003) Calcium in plants. Annals of Botany 92, 487–511.
Calcium in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXoslOmtLg%3D&md5=480b5a23d251cfd9ff6b493bb8b89f98CAS | 12933363PubMed |

White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytologist 182, 49–84.
Biofortification of crops with seven mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksVKhtbw%3D&md5=bc00d739e8f944c687ed9fe0c40fb43eCAS | 19192191PubMed |

White PJ, Broadley MR, Thompson JA, McNicol JW, Crawley MJ, Poulton PR, Johnston AE (2012) Testing the distinctness of shoot ionomes of angiosperm families using the Rothamsted Park Grass Continuous Hay Experiment. New Phytologist 196, 101–109.
Testing the distinctness of shoot ionomes of angiosperm families using the Rothamsted Park Grass Continuous Hay Experiment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Cis7bO&md5=6d6de03d670a61e1f9472f23b96dc2d7CAS | 22803633PubMed |

White PJ, George TS, Gregory PJ, Bengough AG, Hallett PD, McKenzie BM (2013) Matching roots to their environment. Annals of Botany 112, 207–222.
Matching roots to their environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFSiur7P&md5=0b0ee43b6a2ee591999732ea3dfaa840CAS | 23821619PubMed |