Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

Can arable forage production be intensified sustainably? A case study from northern Germany

Antje Herrmann A B , Sandra Claus A , Ralf Loges A , Christof Kluß A and Friedhelm Taube A
+ Author Affiliations
- Author Affiliations

A Institute of Crop Science and Plant Breeding, Grass and Forage Science/Organic Agriculture, Kiel University, Hermann-Rodewald-Str. 9, D-24118 Kiel, Germany.

B Corresponding author. Email: aherrmann@gfo.uni-kiel.de

Crop and Pasture Science 65(6) 538-549 https://doi.org/10.1071/CP13362
Submitted: 30 October 2013  Accepted: 22 March 2014   Published: 13 May 2014

Abstract

Greenhouse gas emissions (GHG) resulting from forage production contribute a major share to ‘livestock’s long shadow’. A 2-year field experiment was conducted at two sites in northern Germany to quantify and evaluate the carbon footprint of arable forage cropping systems (continuous silage maize, maize–wheat–grass rotation, perennial ryegrass ley) as affected by N-fertiliser type and N amount. Total GHG emissions showed a linear increase with N application, with mineral-N supply resulting in a steeper slope. Product carbon footprint (PCF) ranged between –66 and 119 kg CO2eq/(GJ net energy lactation) and revealed a quadratic or linear response to fertiliser N input, depending on the cropping system and site. Thus, exploitation of yield potential while mitigating PCF was not feasible for all tested cropping systems. When taking credits or debts for carbon sequestration into account, perennial ryegrass was characterised by a lower PCF than continuous maize or the maize-based rotation, at the N input required for achieving maximum energy yield, whereas similar or higher PCF was found when grassland was assumed to have achieved soil carbon equilibrium. The data indicate potential for sustainable intensification when cropping systems and crop management are adapted to increase resource-use efficiency.

Additional keywords: carbon footprint, forage cropping system, N fertilisation, N fertiliser type, perennial ryegrass, silage maize.


References

Adler PR, Del Grosso SJ, Parton WJ (2007) Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems. Ecological Applications 17, 675–691.
Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems.Crossref | GoogleScholarGoogle Scholar | 17494388PubMed |

Adom F, Maes A, Workman C, Clayton-Nierderman Z, Thoma G, Shonnard D (2012) Regional carbon footprint analysis of dairy feeds for milk production in the USA. International Journal of Life Cycle Assessment 17, 520–534.
Regional carbon footprint analysis of dairy feeds for milk production in the USA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmslWlsbc%3D&md5=3bf2fd80d4b1c114d4babdf2cc4832a7CAS |

Adviento-Borbe MAA, Haddix ML, Binder DL, Walter DT, Dobermann A (2007) Soil greenhouse gas fluxes and global warming potential in four high-yielding maize systems. Global Change Biology 13, 1972–1988.
Soil greenhouse gas fluxes and global warming potential in four high-yielding maize systems.Crossref | GoogleScholarGoogle Scholar |

Arrouays D, Balesdent J, Germon JC, Jayet PA, Soussana JF, Stengel P (2002) Stocker du carbonne dans les sols agricoles de France? Scientific Expert Report for the French Ministry for Ecology and Sustainable Development. INRA, Paris. Available at: http://institut.inra.fr/Missions/Eclairer-les-decisions/Expertises/Toutes-les-actualites/Stocker-du-carbone-dans-les-sols-agricoles-de-France

Bockisch F (2000) Bewertung von verfahren der ökologischen und konventionellen landwirtschaftlichen produktion im hinblick auf den energieeinsatz und bestimmte schadgasemissionen. Special Report commissioned for the Federal Ministry of Food, Agriculture and Forestry, Bonn, Germany.

Brandão M, Milà I, Canals L, Clift R (2011) Soil organic carbon changes in the cultivation of energy crops: Implications for GHG balances and soil quality for use in LCA. Biomass and Bioenergy 35, 2323–2336.
Soil organic carbon changes in the cultivation of energy crops: Implications for GHG balances and soil quality for use in LCA.Crossref | GoogleScholarGoogle Scholar |

Clemens J, Trimborn M, Weiland P, Amon B (2006) Mitigation of greenhouse gas emissions by anaerobic digestion of cattle slurry. Agriculture, Ecosystems & Environment 112, 171–177.
Mitigation of greenhouse gas emissions by anaerobic digestion of cattle slurry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xktl2lsQ%3D%3D&md5=d882c15149eed8bebf977934f780c9d0CAS |

Conant RT, Paustian K, Elliot DT (2001) Grassland management and conversion into grassland: Effects on soil carbon. Ecological Applications 11, 343–355.
Grassland management and conversion into grassland: Effects on soil carbon.Crossref | GoogleScholarGoogle Scholar |

Daniel J, Scholwin F (2008) Wirtschaftlichkeitsbetrachtungen. Materialband O. In ‘Optimierungen für einen nachhaltigen ausbau der biogaserzeugung und -nutzung in Deutschland’. (Eds R Vogt et al.) (IFEU: Heidelberg) Available at: www.ifeu.de/landwirtschaft/pdf/BMU-Biogasprojekt%202008-Materialband%20O.pdf

Davies B, Baulcombe D, Crute I, Dunwell J, Gale M, Jones J, Pretty J, Sutherland W, Toulmin C (2009) ‘Reaping the benefits: Science and the sustainable intensification of global agriculture.’ (Royal Society: London)

De Boever JL, Cottyn BG, Andries JI, Buysse FX, VAnacker JM (1988) The use of a cellulose technique to predict digestibility, metabolizable and net energy of forages. Animal Feed Science and Technology 19, 247–260.
The use of a cellulose technique to predict digestibility, metabolizable and net energy of forages.Crossref | GoogleScholarGoogle Scholar |

del Prado A, Chadwick D, Cardenas L, Misselbrook T, Scholefield D, Merino P (2010) Exploring systems responses to mitigation of GHG in UK dairy farms. Agriculture, Ecosystems & Environment 136, 318–332.
Exploring systems responses to mitigation of GHG in UK dairy farms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisFenuro%3D&md5=757dc60ea9a39e49eea122a58475dbf3CAS |

Dinuccio E, Berg W, Balsari P (2008) Gaseous emissions from the storage of untreated slurries and the fractions obtained after mechanical separation. Atmospheric Environment 42, 2448–2459.
Gaseous emissions from the storage of untreated slurries and the fractions obtained after mechanical separation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXivFOhsLc%3D&md5=eb9a32f733a113e1720e04a348b2f526CAS |

EC (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for community action in the field of water policy. OJL 327, 1–73.

EC (2012) Agriculture and environment. Cross-compliance. European Commission, Brussels. Available at: http://ec.europa.eu/agriculture/envir/cross-compliance/index_en.htm

EEA (2013) NEC Directive status report 2012. Technical Report No. 6/2013. European Environment Agency, Copenhagen. Available at: www.eea.europa.eu/publications/nec-directive-status-report-2012

Firbank LG, Elliot J, Drake B, Cao Y, Gooday R (2013) Evidence of sustainable intensification among British farms. Agriculture, Ecosystems & Environment 173, 58–65.
Evidence of sustainable intensification among British farms.Crossref | GoogleScholarGoogle Scholar |

Fischer RA, Edmeades GO (2010) Breeding and cereal yield progress. Crop Science 50, S85–S98.
Breeding and cereal yield progress.Crossref | GoogleScholarGoogle Scholar |

FNR (2009) Biogas-Messprogramm II. Fachagentur Nachwachsende Rohstoffe, Gülzow, Germany. Available at: www.fnr-server.de/ftp/pdf/literatur/pdf_385-messprogramm_ii.html

FNR (2010) ‘Biogas-Messprogramm II, 61 Biogasanlagen im Vergleich.’ Johann Heinrich von Thünen-Institut (vTI), Gülzow. (Fachagentur Nachwachsende Rohstoffe e.V.: Gülzow, Germany)

Fornara DA, Banin L, Crawley MJ (2013) Multi-nutrient vs. nitrogen-only effects on carbon sequestration in grassland soils. Global Change Biology 19, 3848–3857.
Multi-nutrient vs. nitrogen-only effects on carbon sequestration in grassland soils.Crossref | GoogleScholarGoogle Scholar | 23907927PubMed |

Gaillard G, Hausheer J, Crettaz P (1997) Umweltinventar der lanwirtschaftlichen inputs im pflanzenbau. Daten für die erstellung von energie- und ökobilanz der landwirtschaft. FAT-Schriftenreihe 46. Tänikon Ettenhausen, Switzerland.

Garnett T, Godfray C (2012) ‘Sustainable intensification in agriculture. Navigating a course through competing food system priorities.’ (Food Climate Research Network and the Oxford Martin Programme on the Future of Food, University of Oxford: Oxford, UK)

Gericke D (2009) Measurement and modelling of ammonia emissions after field application of biogas slurries. Doctoral Thesis, Kiel University, Germany.

Gericke D, Bornemann L, Kage H, Pacholski A (2012) Modelling ammonia losses after field application of biogas slurry in energy crop rotations. Water, Air, and Soil Pollution 223, 29–47.
Modelling ammonia losses after field application of biogas slurry in energy crop rotations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFynsrvN&md5=5d0f903a5e96179a46a7436c5b3f6069CAS |

GfE (2009) New equations for predicting metabolisable energy of compound feeds for cattle. Proceedings of the Society of Nutrition Physiology 18, 143–146.

Gilmanov TG, Soussana JF, Aires L, Allard V, Ammann C, Balzarolo M, Barcza Z, Bernhofer C, Campbell CL, Cernusca A, Cescatti A, Clifton-Brown J, Dirks BOM, Dore S, Eugster W, Fuhrer J, Gimeno C, Gruenwald T, Haszpra L, Hensen A, Ibrom A, Jacobs AFG, Jones MB, Lanigan G, Laurila T, Lohila A, Manca G, Marcolla B, Nagy Z, Pilegaard K, Pinter K, Pio C, Raschi A, Rogiers N, Sanz MJ, Stefani P, Sutton M, Tuba Z, Valentini R, Williams ML, Wohlfahrt G (2007) Partitioning European grassland net ecosystem CO2 exchange into gross primary productivity and ecosystem respiration using light response function analysis. Agriculture, Ecosystems & Environment 121, 93–120.
Partitioning European grassland net ecosystem CO2 exchange into gross primary productivity and ecosystem respiration using light response function analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisVSqt78%3D&md5=ee0eeb4017b0f93d5627c2aa10b17773CAS |

González-García S, Bacenetti J, Negri M, Fiala M, Arroja L (2013) Comparative environmental performance of three different annual energy crops for biogas production in Northern Italy. Journal of Cleaner Production 43, 71–83.
Comparative environmental performance of three different annual energy crops for biogas production in Northern Italy.Crossref | GoogleScholarGoogle Scholar |

Grassini P, Cassman KG (2012) High-yield maize with large net energy yield and small global warming intensity. Proceedings of the National Academy of Sciences of the United States of America 109, 1074–1079.
High-yield maize with large net energy yield and small global warming intensity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XislWlu70%3D&md5=58333b7f544614ce90d417ee25ade943CAS | 22232684PubMed |

Henriksson M, Flysjö A, Cederberg C, Swensson C (2011) Variation in carbon footprint of milk due to management differences between Swedish dairy farms. Animal 5, 1474–1484.
Variation in carbon footprint of milk due to management differences between Swedish dairy farms.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38vovFSjtg%3D%3D&md5=cb6ec6dafbabd993915adad552d0b97aCAS | 22440294PubMed |

Herrmann A, Tode J, Taube F (2012) Soil organic carbon degradation: is silage maize unfairly overestimated? Grassland Science in Europe 17, 616–618.

Hillier J, Hawes C, Squire G, Hilton A, Wale S, Smith P (2009) The carbon footprints of food crop production. International Journal of Agricultural Sustainability 7, 107–118.
The carbon footprints of food crop production.Crossref | GoogleScholarGoogle Scholar |

Hristov AN, Oh J, Lee C, Meinen R, Montes F, Ott T, Firkins J, Rotz A, Dell C, Adesogan A, Yang W, Tricarico J, Kebreab E, Waghorn G, Dijkstra J, Oosting S (2013) ‘Mitigation of greenhouse gas emissions in livestock production – A review of technical options for non-CO2 emissions.’ FAO Animal Production and Health Paper No. 177. (Eds JP Gerber, B Henderson, HPS Makkar) (FAO: Rome)

Hülsbergen K, Feil B, Biermann S, Rathke G, Kalk WD, Diepenbrock W (2001) A method of energy balancing in crop production and its application in a long-term fertilizer trial. Agriculture, Ecosystems & Environment 86, 303–321.
A method of energy balancing in crop production and its application in a long-term fertilizer trial.Crossref | GoogleScholarGoogle Scholar |

IPCC (2006) ‘IPCC Guidelines for natural greenhouse gas inventories. Vol. 4. Agriculture, forestry and other land use.’ (Intergovernmental Panel on Climate Change, IGIS: Hayama, Japan)

Jans WWP, Jacobs CMJ, Kruijt B, Elbers JA, Barendse S, Moors EJ (2010) Carbon exchange of maize (Zea mays L.) crop: influence of phenology. Agriculture, Ecosystems & Environment 139, 316–324.
Carbon exchange of maize (Zea mays L.) crop: influence of phenology.Crossref | GoogleScholarGoogle Scholar |

Kaltschmitt M, Reinhardt G (1997) ‘Nachwachsende energieträger: Grundlagen, verfahren, ökologische bilanzierung.’ (Friedr. Vieweg & Sohn Verlagsgesellschaft: Braunschweig/Wiesbaden, Germany)

Klop G, Velthof GL, van Groenigen JW (2012) Application technique affects the potential of mineral concentrates from livestock manure to replace inorganic nitrogen fertilizer. Soil Use and Management 28, 468–477.
Application technique affects the potential of mineral concentrates from livestock manure to replace inorganic nitrogen fertilizer.Crossref | GoogleScholarGoogle Scholar |

Kristiansen SM, Hansen EM, Jensen LS, Christensen BT (2005) Natural 13C abundance and carbon storage in Danish soils under continuous silage maize. European Journal of Agronomy 22, 107–117.
Natural 13C abundance and carbon storage in Danish soils under continuous silage maize.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtlGgsg%3D%3D&md5=f299b6d7700a5f96cceaae948edf313eCAS |

KTBL (2011) KTBL-Datenbank kalkulationsdaten: pflanzenproduktion. Kuratorium für Technik und Bauwesen in der Landwirtschaft, Darmstadt, Germany. Available at: www.ktbl.de

Kulak M, Nemecek T, Frossard E, Gaillard G (2013) How eco-efficient are low-input cropping systems in Western Europe, and what can be done to improve their eco-efficiency? Sustainability 5, 3722–3743.
How eco-efficient are low-input cropping systems in Western Europe, and what can be done to improve their eco-efficiency?Crossref | GoogleScholarGoogle Scholar |

Ledgard S, Schils R, Eriksen J, Luo J (2009) Environmental impacts of grazed clover/grass pastures. Irish Journal of Agricultural and Food Research 48, 209–226.

Leifeld J, Ammann C, Neftel A, Fuhrer J (2011) A comparison of repeated soil inventory and carbon flux budget to detect soil carbon stock changes after conversion from cropland to grasslands. Global Change Biology 17, 3366–3375.
A comparison of repeated soil inventory and carbon flux budget to detect soil carbon stock changes after conversion from cropland to grasslands.Crossref | GoogleScholarGoogle Scholar |

Lesschen JP, van den Berg M, Westhoek HJ, Witzke HP, Oenema O (2011) Greenhouse gas emission profiles of European livestock sectors. Animal Feed Science and Technology 166–167, 16–28.
Greenhouse gas emission profiles of European livestock sectors.Crossref | GoogleScholarGoogle Scholar |

Lüscher A, Mueller-Harvey I, Soussana JF, Rees RM, Peyraud JL (2013) Potential of legume-based grassland-livestock systems in Europe. Grassland Science in Europe 18, 3–29.

Ma BL, Liang BC, Biswas DK, Morrison MJ, McLaughlin NB (2012) The carbon footprint of maize production as affected by nitrogen fertilizer and maize-legume rotations. Nutrient Cycling in Agroecosystems 94, 15–31.
The carbon footprint of maize production as affected by nitrogen fertilizer and maize-legume rotations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVKhtbjK&md5=c0edda1ed640be689851f8807d8ce7f1CAS |

Meyer-Aurich A, Olesen JE, Prochnow A, Brunsch R (2013) Greenhouse gas mitigation with scarce land: The potential contribution of increased nitrogen input. Mitigation and Adaptation Strategies for Global Change 18, 921–932.
Greenhouse gas mitigation with scarce land: The potential contribution of increased nitrogen input.Crossref | GoogleScholarGoogle Scholar |

Nevens F, Reheul D (2002) The nitrogen- and non-nitrogen contribution effect of ploughed grass leys on the following arable forage crops: determination and optimum use. European Journal of Agronomy 16, 57–74.
The nitrogen- and non-nitrogen contribution effect of ploughed grass leys on the following arable forage crops: determination and optimum use.Crossref | GoogleScholarGoogle Scholar |

Ning P, Liao C, Li S, Yu P, Zhang Y, Li X, Li C (2012) Maize cob plus husks mimics the grain sink to stimulate nutrient uptake by roots. Field Crops Research 130, 38–45.
Maize cob plus husks mimics the grain sink to stimulate nutrient uptake by roots.Crossref | GoogleScholarGoogle Scholar |

O’Brien D, Shalloo L, Patton J, Buckley F, Grainger C, Wallace M (2012) A life cycle assessment of seasonal grass-based and confinement dairy farms. Agricultural Systems 107, 33–46.
A life cycle assessment of seasonal grass-based and confinement dairy farms.Crossref | GoogleScholarGoogle Scholar |

Oenema O, de Klein C, Alfaro M (2013) Does intensification of grassland and forage use lead to efficient, profitable and sustainable ecosystems? In ‘Proceedings of the 22nd International Grassland Congress’. Sydney, Australia. (Eds DL Michalk, GD Millar, WB Badgery, KM Broadfoot) pp. 56–66. (CSIRO Publishing: Melbourne)

Patyk A, Reinhardt GA (1997) ‘Düngemittel-, Energie und Stoffstrombilanzen.’ (Viehweg-Verlag: Braunschweig/Wiesbaden, Germany)

Pawelzik P, Carus M, Hotchkiss J, Narayan R, Selke S, Wellisch M, Weiss M, Wicke B, Patel MK (2013) Critical aspects in the life cycle assessment (LCA) of bio-based materials – Reviewing methodologies and deriving recommendations. Resources, Conservation and Recycling 73, 211–228.
Critical aspects in the life cycle assessment (LCA) of bio-based materials – Reviewing methodologies and deriving recommendations.Crossref | GoogleScholarGoogle Scholar |

Schmeer M, Loges R, Dittert K, Senbayram M, Horn R, Taube F (2013) Legume-based forage production systems reduce nitrous oxide emissions. Soil & Tillage Research in press.

Scholz V (1995) Energiebilanz für Festbrennstoffe. Forschungsbericht 95/3. Landtechnik 2/96, 82–83.

Senbayram M (2009) Greenhouse gas emission from soils of bioenergy crop production systems and regulating factors. Doctoral Thesis, Kiel University, Germany.

Shenk JS, Westerhaus MO (1991) Population structuring of near infrared spectra and modified partial least square regression. Crop Science 31, 1548–1555.
Population structuring of near infrared spectra and modified partial least square regression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xht1Oitrg%3D&md5=4ddc674f1f7e93164a3e9642effe9d21CAS |

Sieling K, Herrmann A, Wienforth B, Taube F, Ohl S, Hartung E, Kage H (2013) Biogas cropping systems: short term response of yield performance and N use efficiency to biogas residue application. European Journal of Agronomy 47, 44–54.
Biogas cropping systems: short term response of yield performance and N use efficiency to biogas residue application.Crossref | GoogleScholarGoogle Scholar |

Simon K (1998) ‘Hinweise zu den in den beispielszenarien der studie- klimarelevanz von landwirtschaft und ernährung- verwendeten kenngrößen.’ (Wissenschaftliches Zentrum für Umweltsystemforschung: Kassel, Germany)

Skinner RH (2008) High biomass removal limits carbon sequestration potential of mature temperate pastures. Journal of Environmental Quality 37, 1319–1326.
High biomass removal limits carbon sequestration potential of mature temperate pastures.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXos1eksrk%3D&md5=97cc7ec50d4b1d733c5cbb16200eb589CAS | 18574161PubMed |

Skinner RH (2013) Nitrogen fertilization effects on pasture photosynthesis, respiration, and ecosystem carbon content. Agriculture, Ecosystems & Environment 172, 35–41.
Nitrogen fertilization effects on pasture photosynthesis, respiration, and ecosystem carbon content.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptFGltLc%3D&md5=b6374080d6e954f4f472b0e65e6c4b1fCAS |

Soussana JF, Allard V, Pilegaard K, Ambus P, Amman C, Campbell C, Ceschia E, Clifton-Brown J, Czobel S, Domingues R, Flechard C, Fuhrer J, Hensen A, Horvath L, Jones M, Kasper G, Martin C, Nagy Z, Neftel A, Raschi A, Baronti S, Rees RM, Skiba U, Stefani P, Manca G, Sutton M, Tuba Z, Valentini R (2007) Full accounting of the greenhouse gas (CO2, N2O, CH4) budget of nine European grassland sites. Agriculture, Ecosystems & Environment 121, 121–134.
Full accounting of the greenhouse gas (CO2, N2O, CH4) budget of nine European grassland sites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisVSqsbY%3D&md5=e6a410389d1d7c401ee7657928c53c63CAS |

Soussana JF, Tallec T, Blanfort V (2010) Mitigating the greenhouse gas balance of ruminant production systems through carbon sequestration in grasslands. Animal 4, 334–350.
Mitigating the greenhouse gas balance of ruminant production systems through carbon sequestration in grasslands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhslWgs70%3D&md5=885862509bfcd1b678da2bceebad5bbaCAS | 22443939PubMed |

Svoboda N (2011) Auswirkungen der Gärrestapplikation auf das Stickstoff-Auswaschungs¬potential von Anbausystemen zur Substratproduktion. Doctoral Thesis, Kiel University, Germany.

Svoboda N, Taube F, Kluß C, Wienforth B, Kage H, Ohl S, Hartung E, Herrmann A (2013) Crop production for biogas and water protection – A trade-off? Agriculture, Ecosystems & Environment 177, 36–47.
Crop production for biogas and water protection – A trade-off?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVKktbvM&md5=4084b6b8c4aafdc17d4352a21c5bbe64CAS |

Taube F, Gierus M, Herrmann A, Loges R, Schönbach P (2013) Grassland and globalization – challenges for northwest European grass and forage research. Grass and Forage Science 69, 2–16.
Grassland and globalization – challenges for northwest European grass and forage research.Crossref | GoogleScholarGoogle Scholar |

Thomsen IK, Schjønning P, Jensen B, Kristensen K, Christensen BT (1999) Turnover of organic matter in differently textured soils: II. Microbial activity as influenced by soil water regimes. Geoderma 89, 199–218.
Turnover of organic matter in differently textured soils: II. Microbial activity as influenced by soil water regimes.Crossref | GoogleScholarGoogle Scholar |

Tilman D, Balzer C, Hill J, Belfort BL (2011) Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America 108, 20 260–20 264.
Global food demand and the sustainable intensification of agriculture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1yqsbnM&md5=3d88f9f9f197bcfa3c87266f51f92184CAS |

Van Groenigen JW, Velthof GL, Oenema O, van Groenigen KJ, van Kessel C (2010) Towards an agronomic assessment of N2O emissions: a case study for arable crops. European Journal of Soil Science 61, 903–913.
Towards an agronomic assessment of N2O emissions: a case study for arable crops.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXks1Gr&md5=84d662bb4d2ec318b25e7c405ffa9949CAS |

Vellinga TV, Hoving IE (2011) Maize silage for dairy cows: mitigation of methane emissions can be offset by land use change. Nutrient Cycling in Agroecosystems 89, 413–426.
Maize silage for dairy cows: mitigation of methane emissions can be offset by land use change.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivFyrsr4%3D&md5=daa0ec47697a503ebcbf3f89b65ed201CAS |

Vertès F, Hatch D, Velthof G, Taube F, Laurent F, Loiseau P, Recous S (2007) Short-term and cumulative effects of grassland cultivation on nitrogen and carbon cycling in ley-arable rotations. Grassland Science in Europe 12, 227–246.

Volkers K (2004) Auswirkungen einer variierten Stickstoff-Intensität auf Leistung und Stickstoffbilanz von Silomais in Monokultur sowie einer Ackerfutterbau-Fruchtfolge auf sandigen Böden Norddeutschlands. Doctoral Thesis, Kiel University, Germany.

von Lützow M, Kögel-Knabner I (2009) Temperature sensitivity of soil organic matter decomposition – what do we know? Biology and Fertility of Soils 46, 1–15.
Temperature sensitivity of soil organic matter decomposition – what do we know?Crossref | GoogleScholarGoogle Scholar |

Webb J, Pain B, Bittman S, Morgan J (2010) The impacts of manure application methods on emissions of ammonia, nitrous oxide and on crop response – A review. Agriculture, Ecosystems & Environment 137, 39–46.
The impacts of manure application methods on emissions of ammonia, nitrous oxide and on crop response – A review.Crossref | GoogleScholarGoogle Scholar |

Weißbach F, Schmidt L, Kuhla S (1996) Vereinfachtes Verfahren zur Berechnung der NEL aus der umsetzbaren Energie. Proceedings of the Society of Nutrition Physiology 5, 117

Yan M-J, Humphreys J, Holden NM (2013) The carbon footprint of pasture-based milk production: Can white clover make a difference? Journal of Dairy Science 96, 857–865.
The carbon footprint of pasture-based milk production: Can white clover make a difference?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Oks70%3D&md5=d2b5ace46d56c6ed6aca8d87222d8628CAS | 23200470PubMed |

Yang JM, Yang JY, Dou S, Yang XM, Hoogenboom G (2013) Simulating the effect of long-term fertilization on maize yield and soil C/N dynamics in northeastern China using DSSAT and CENTURY-based soil model. Nutrient Cycling in Agroecosystems 95, 287–303.
Simulating the effect of long-term fertilization on maize yield and soil C/N dynamics in northeastern China using DSSAT and CENTURY-based soil model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFGrsLnE&md5=0d43ca4d24682c6cf550ace80547dba2CAS |

Zar JH (2009) ‘Biostatistical analysis.’ 5th edn (Prentice Hall, Inc.: Upper Saddle River, NJ, USA)