Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

Mapping quantitative trait loci for resistance to Pratylenchus thornei from synthetic hexaploid wheat in the International Triticeae Mapping Initiative (ITMI) population

R. S. Zwart A , J. P. Thompson A C , J. G. Sheedy A and J. C. Nelson B
+ Author Affiliations
- Author Affiliations

A Department of Primary Industries and Fisheries, PO Box 2282, Toowoomba, Qld 4350, Australia.

B Department of Plant Pathology, 4024 Throckmorton Hall, Kansas State University, Manhattan, KS, USA.

C Corresponding author. Email: john.thompson@dpi.qld.gov.au

Australian Journal of Agricultural Research 57(5) 525-530 https://doi.org/10.1071/AR05177
Submitted: 18 May 2005  Accepted: 7 December 2005   Published: 17 May 2006

Abstract

Root-lesion nematode (Pratylenchus thornei) is a serious pathogen of wheat in many countries. The International Triticeae Mapping Initiative (ITMI) population of recombinant inbred lines (RILs) was assessed for resistance to P. thornei to determine the chromosome locations of the resistance genes. The ITMI population is derived from a cross between the resistant synthetic hexaploid wheat W-7984 and a susceptible bread wheat cultivar Opata 85. Two years of phenotypic data for resistance to P. thornei were obtained in replicated glasshouse trials. Quantitative trait locus (QTL) analysis was performed using available segregation and map data for 114 RILs. A QTL on chromosome 6DS showed consistent effects for reduced nematode numbers (partial resistance) across years and accounted for 11% and 23% of the phenotypic variation. A second QTL for P. thornei resistance on chromosome 2BS accounted for an additional 19% and 5%. Restriction fragment length polymorphism (RFLP) and simple sequence repeat (SSR) markers associated with the QTLs are physically located in regions rich in major genes at the distal ends of the short chromosome arms of 6D and 2B. SSR markers with potential for marker-assisted selection of P. thornei resistance effective in different genetic backgrounds have been identified.

Additional keywords: root-lesion nematodes, bread wheat, molecular markers, MAS, composite interval mapping, QTL Cartographer, W-7984, Opata 85.


Acknowledgments

We wish to thank T. G. Clewett for technical assistance, Dr P. J. Sharp, University of Sydney, Australia, and Dr K. J. Chalmers, University of Adelaide, Australia, for providing seed of the ITMI population, and Dr P. S. Brennan for suggesting an investigation of P. thornei resistance in this population. This work was supported by the Grains Research and Development Corporation of Australia.


References


Berry DA (1987) Logarithmic transformations in ANOVA. Biometrics 43, 439–456.
PubMed |
open url image1

Brennan JP , Murray GM (1998) ‘Economic importance of wheat diseases in Australia.’ (NSW Agriculture: Wagga Wagga)

Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138, 963–971.
PubMed |
open url image1

Dilbirligi M, Erayman M, Sandhu D, Sidhu D, Gill KS (2004) Identification of wheat chromosomal regions containing expressed resistance genes. Genetics 166, 461–481.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Erayman M, Sandhu D, Sidhu D, Dilbirligi M, Baenziger PS, Gill KS (2004) Demarcating the gene-rich regions of the wheat genome. Nucleic Acids Research 32, 3546–3565.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hartl DL , Freifelder D , Snyder LA (1988) Quantitative genetics. In ‘Basic genetics’. (Jones and Bartlett: Boston, MA)

Krawetz JE, Boston RS (2000) Substrate specificity of a maize ribosome-inactivating protein differs across diverse taxa. European Journal of Biochemistry 267, 1966–1974.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1, 174–181.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Langridge P, Lagudah ES, Holton TA, Appels R, Sharp P, Chalmers KJ (2001) Trends in genetic and genome analyses in wheat: a review. Australian Journal of Agricultural Research 52, 1043–1077.
Crossref | GoogleScholarGoogle Scholar | open url image1

Li WL, Faris JD, Chittoor JM, Leach JE, Hulbert SH, Liu DJ, Chen PD, Gill BS (1999) Genomic mapping of defense response genes in wheat. Theoretical and Applied Genetics 98, 226–233.
Crossref | GoogleScholarGoogle Scholar | open url image1

Loof PAA (1991) The family Pratylenchidae Thorne, 1949. In ‘Manual of agricultural nematology’. (Ed. WR Nickle) pp. 363–421. (Marcel Dekker: New York)

Marino CL, Nelson JC, Lu YH, Sorrells ME, Leroy P, Lopes CR, Hart GE (1996) Molecular genetic maps of the group 6 chromosomes of hexaploid wheat (Triticum aestivum L. em. Thell.). Genome 39, 359–366. open url image1

McIntosh RA , Yamazaki Y , Devos KM , Dubcovsky J , Rogers WJ , Appels R (2003) Catalogue of gene symbols for wheat. In ‘Proceedings of the 10th International Wheat Genetics Symposium’. Vol. 4. (Eds NE Pogna, M Romanò, E Pogna, G Gatterio) pp. 1–43. (Istituto Sperimentale per la Cerealicoltura: Rome)

Mujeeb-Kazi A (1995) Interspecific crosses: hybrid production and utilisation. In ‘Utilizing wild grass biodiversity in wheat improvement: 15 years of wide cross research at CIMMYT’. (Eds A Mujeeb-Kazi, GP Hettel) (CIMMYT: Mexico, DF)

Nelson JC, Sorrells ME, Van Deynze AE, Lu YH, Atkinson M, Bernard M, Leroy P, Faris JD, Anderson JA (1995a) Molecular mapping of wheat: major genes and rearrangements in homoeologous groups 4, 5, and 7. Genetics 141, 721–731.
PubMed |
open url image1

Nelson JC, Van Deynze AE, Autrique E, Sorrells ME, Lu YH, Merlino M, Atkinson M, Leroy P (1995b) Molecular mapping of wheat. Homoeologous group 2. Genome 38, 516–524. open url image1

Nelson JC, Van Deynze AE, Autrique E, Sorrells ME, Lu YH, Negre S, Bernard M, Leroy P (1995c) Molecular mapping of wheat. Homoeologous group 3. Genome 38, 525–533. open url image1

Nicol JM , Davis KA , Eastwood R (1998) AUS4930: a new source of resistance to root-lesion nematode, Pratylenchus thornei in wheat. In ‘24th European Society of Nematologists International Symposium’. Dundee, Scotland. p. 81.

Payne RW , Baird DB , Cherry M , Gilmour AR , Harding SA , Kane AF , Lane PW , Murray DA , Souter DM , Thompson R , Todd AD , Tunnicliffe-Wilson G , Webster R , Welham SJ (2002) ‘GenStat Release 6.1 Reference Manual.’ (VSN International: Oxford)

Proctor JR, Marks CF (1974) The determination of normalizing transformations for nematode count data from soil samples and of efficient sampling schemes. Nematologica 20, 395–406. open url image1

Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149, 2007–2023.
PubMed |
open url image1

Schmidt AL, McIntyre CL, Thompson JP, Liu CJ (2005) Quantitative trait loci for root lesion nematode (Pratylenchus thornei) resistance in Middle-Eastern landraces and their potential for introgression into Australian bread wheat. Australian Journal of Agricultural Research 56, 1059–1068.
Crossref |
open url image1

Seymour NP , Thompson JP (2001) New sources of resistance to root-lesion nematodes (Pratylenchus thornei) in wheats from the Middle East. In ‘Proceedings of the 10th Assembly of the Wheat Breeding Society of Australia’. (Eds R Eastwood, G Hollamby, T Rathjen, N Gororo) pp. 56–59. (Wheat Breeding Society of Australia: Adelaide, S. Aust.)

Shah MS, Hassan A (2005) Distribution of genes and recombination on wheat homoeologous group 6 chromosomes: a synthesis of available information. Molecular Breeding 15, 45–53.
Crossref | GoogleScholarGoogle Scholar | open url image1

Singh RP, Nelson JC, Sorrells ME (2000) Mapping Yr28 and other genes for resistance to stripe rust in wheat. Crop Science 40, 1148–1155. open url image1

Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat. Theoretical and Applied Genetics 109, 1105–1114.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Song QJ, Shi JR, Singh S, Fickus EW, Costa JM, Lewis J, Gill BS, Ward R, Cregan PB (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theoretical and Applied Genetics 110, 550–560.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi L, Gill BS, Dufour P, Murigneux A, Bernard M (2004) Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Functional & Integrative Genomics 4, 12–25.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Thompson JP, Brennan PS, Clewett TG, Sheedy JG, Seymour NP (1999) Progress in breeding wheat for tolerance and resistance to root-lesion nematode (Pratylenchus thornei). Australasian Plant Pathology 28, 45–52.
Crossref | GoogleScholarGoogle Scholar | open url image1

Thompson JP, Haak MI (1997) Resistance to root-lesion nematode (Pratylenchus thornei) in Aegilops tauschii Coss., the D-genome donor to wheat. Australian Journal of Agricultural Research 48, 553–559.
Crossref | GoogleScholarGoogle Scholar | open url image1

Thompson JP , Mackenzie J , McCulloch J , Clewett TG (1982) Integrated control of root-lesion nematode. Queensland Wheat Research Institute Biennial Report for 1980–82, pp. 31–32. QDPI, Toowoomba.

Van Deynze AE, Dubcovsky J, Gill KS, Nelson JC, Sorrels ME, Dvorák J, Gill BS, Lagudah ES, McCouch SR, Appels R (1995) Molecular-genetic maps for group 1 chromosomes of Triticeae species and their relation to chromosomes in rice and oat. Genome 38, 45–59. open url image1

Vanstone VA, Rathjen AJ, Ware AH, Wheeler RD (1998) Relationship between root-lesion nematodes (Pratylenchus neglectus and P. thornei) and performance of wheat varieties. Australian Journal of Experimental Agriculture 38, 181–188.
Crossref | GoogleScholarGoogle Scholar | open url image1

Wang S , Basten CJ , Zeng Z-B (2005) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. Available online at: statgen.ncsu.edu/qtlcart/WQTLCart.htm)

Zwart RS, Thompson JP, Godwin ID (2004a) Genetic analysis of resistance to root-lesion nematode (Pratylenchus thornei Sher and Allen) in wheat. Plant Breeding 123, 209–212.
Crossref | GoogleScholarGoogle Scholar | open url image1

Zwart RS , Thompson JP , Williamson PM , Seymour NP (2004 b) Elite sources of resistance in wheat to root-lesion nematode (Pratylenchus thornei and Pratylenchus neglectus) and yellow spot (Pyrenophora tritici-repentis). In ‘Proceedings of the 3rd Australasian Soilborne Diseases Symposium’. (Eds KM Ophel Keller, BH Hall) p. 220. (South Australian Research and Development Institute: Adelaide, S. Aust.)

Zwart RS, Thompson JP, Godwin ID (2005) Identification of quantitative trait loci for resistance to two species of root-lesion nematode (Pratylenchus thornei and P. neglectus) in wheat. Australian Journal of Agricultural Research 56, 345–352.
Crossref | GoogleScholarGoogle Scholar | open url image1