Cropping calendar, agroclimatic and agroecological zoning for rainfed maize (Zea mays L.) under different rainfall scenarios in a semi-arid region of Brazil
Danilo Batista Nogueira A , Alfredo Mendonça de Sousa B , Alexsandro Oliveira da Silva A * , Bruno Ricardo Silva Costa C , Rafaela da Silva Arruda A and Fernando Ferrari Putti CA
B
C
Abstract
The productivity of crops is influenced by the available net water balance, which relies on a complex interplay of edaphic and climatic factors. In this sense, rainfall is the leading water input for crop growth and yield, especially in water-scarce regions under semi-arid climates worldwide.
This study aimed to define the optimum cropping calendar and the agroclimatic and agroecological zones for rainfed maize in the state of Ceará, which is predominantly located within the Brazilian semi-arid region, assuming different rainfall scenarios.
We considered the subdivision of the study area into eight homogeneous precipitation regions according to the regional rainfall pattern. The climatic water balance for each region over two decades was calculated from historical weather data series, assuming three rainy scenarios: dry, regular, and rainy. The agroclimatic zoning was defined through the crop water balance results, soil classification, land use and occupation, slope and temperature, weighted through a multi-criteria decision analysis based on the Analytic Hierarchy Process.
The recommended planting period was broader in rainy conditions. However, there may be some dry spells between two 10-day intervals of the calendar, which impair plant growth depending on their intensity. For the dry scenario, the agroclimatic zoning showed that the marginal water deficiency covered 96.55% of the study area.
Rainfed maize cultivated under the semi-arid climate of Ceará state is viable in rainy conditions, partially restricted in regular years, and not recommended in dry years.
This study emphasises the importance of climate monitoring in effective planning for rainfed maize cultivation in semi-arid regions.
Keywords: climatic conditions, crop management, edaphic factors, food security, semi-arid climate, water balance, yield gap, Zea mays.
References
Andrade Júnior ASD, Barros AHC, Silva CO, Freire Filho FR (2007) Zoneamento de risco climático para a cultura do feijão-caupi no Estado do Ceará. Revista Ciência Agronômica 38, 109-117.
| Google Scholar |
Andrea MCdS, Boote KJ, Sentelhas PC, Romanelli TL (2018) Variability and limitations of maize production in Brazil: potential yield, water-limited yield and yield gaps. Agricultural Systems 165, 264-273.
| Crossref | Google Scholar |
Andrioli KG, Sentelhas PC (2009) Brazilian maize genotypes sensitivity to water deficit estimated through a simple crop yield model. Pesquisa Agropecuária Brasileira 44, 653-660.
| Google Scholar |
Casaroli D, Rosa FdO, Alves Júnior J, Evangelista AWP, Brito BVd, Pena DS (2018) Edaphoclimatic aptitude to African mahogany in Brazil. Ciência Florestal 28, 357-368.
| Crossref | Google Scholar |
Cunha APM, Alvalá RC, Nobre CA, Carvalho MA (2015) Monitoring vegetative drought dynamics in the Brazilian semiarid region. Agricultural and Forest Meteorology 214-215, 494-505.
| Crossref | Google Scholar |
Cunningham C (2020) Characterization of dry spells in Southeastern Brazil during the monsoon season. International Journal of Climatology 40, 4609-4621.
| Crossref | Google Scholar |
de Souza Nóia Júnior R, Sentelhas PC (2020) Yield gap of the double-crop system of main-season soybean with off-season maize in Brazil. Crop & Pasture Science 71, 445-458.
| Crossref | Google Scholar |
EMBRAPA (2018) Sistema brasileiro de classificação de solos. Embrapa Solos, Brasília. Available at https://www.embrapa.br/solos/sibcs [accessed 20 January 2023]
EMBRAPA (2019) Milho - BRS Caatingueiro. Embrapa, Petrolina, Brazil. Available at https://www.embrapa.br/busca-de-solucoes-tecnologicas/-/produto-servico/380/milho---brs-caatingueiro. [accessed 26 April 2019]
Garcia BIL, Sentelhas PC, Tapia L, Sparovek G (2006) Filling in missing rainfall data in the Andes region of Venezuela, based on a cluster analysis approach. Revista Brasileira de Agrometeorologia 14, 225-233.
| Google Scholar |
GYGA (2015) Global Yield Gap Atlas. Food security analysis: from local to global. Available at https://www.yieldgap.org [accessed 1 March 2019]
Hiera MD, Lima Junior AF, Zanella ME (2019) Tendência da precipitação no estado do Ceará. Revista Brasileira de Climatologia 24, 300-321.
| Crossref | Google Scholar |
Januario IR, Menezes RHN, Bonfim OET (2018) Análise de risco climático para semeadura do arroz no Sul do Estado do Maranhão. Revista Brasileira de Geografia Física 11, 1241-1250.
| Crossref | Google Scholar |
Kassie BT, Van Ittersum MK, Hengsdijk H, Asseng S, Wolf J, Rötter RP (2014) Climate-induced yield variability and yield gaps of maize (Zea mays L.) in the Central Rift Valley of Ethiopia. Field Crops Research 160, 41-53.
| Crossref | Google Scholar |
Kihoro J, Bosco NJ, Murage H (2013) Suitability analysis for rice growing sites using a multicriteria evaluation and GIS approach in great Mwea region, Kenya. SpringerPlus 2, 265.
| Crossref | Google Scholar | PubMed |
Li Z, Li Y, Shi X, Li J (2017) The characteristics of wet and dry spells for the diverse climate in China. Global and Planetary Change 149, 14-19.
| Crossref | Google Scholar |
Lima JRdS, Antonino ACD, Lira CABdO, Souza ESd, Silva IdFd (2011) Balanço de energia e evapotranspiração de feijão caupi sob condições de sequeiro. Revista Ciência Agronômica 42, 65-74.
| Crossref | Google Scholar |
Lyra GB, Garcia BIL, Piedade SMDS, Sediyama GC, Sentelhas PC (2006) Regiões homogêneas e funções de distribuição de probabilidade da precipitação pluvial no Estado de Táchira, Venezuela. Pesquisa Agropecuária Brasileira 41, 205-215.
| Crossref | Google Scholar |
Marengo JA, Soares WR, Saulo C, Nicolini M (2004) Climatology of the low-level jet east of the Andes as derived from the NCEP–NCAR reanalyses: characteristics and temporal variability. Journal of Climate 17, 2261-2280.
| Crossref | Google Scholar |
Mupangwa W, Walker S, Twomlow S (2011) Start, end and dry spells of the growing season in semi-arid southern Zimbabwe. Journal of Arid Environments 75, 1097-1104.
| Crossref | Google Scholar |
Nogueira DB, Silva AO, Giroldo AB, Silva APN, Costa BRS (2023) Dry spells in a semi-arid region of Brazil and their influence on maize productivity. Journal of Arid Environments 209, 104892.
| Google Scholar |
Saaty RW (1987) The analytic hierarchy process – what it is and how it is used. Mathematical Modelling 9, 161-176.
| Crossref | Google Scholar |
Sentelhas PC, Battisti R, Câmara GMS, Farias JRB, Hampf AC, Nendel C (2015) The soybean yield gap in Brazil – magnitude, causes and possible solutions for sustainable production. The Journal of Agricultural Science 153, 1394-1411.
| Crossref | Google Scholar |
Silva FdAS, Rao TVR (2002) Regimes pluviais, estação chuvosa e probabilidade de ocorrência de veranicos no Estado do Ceará. Revista Brasileira de Engenharia Agrícola e Ambiental 6, 440-446.
| Crossref | Google Scholar |
Silva VdPRd, Oliveira SDd, Santos CACd, Silva MT (2013) Risco climático da cana-de-açúcar cultivada na região nordeste do Brasil. Revista Brasileira de Engenharia Agrícola e Ambiental 17, 180-189.
| Crossref | Google Scholar |
Souza LSBD, Moura MSBD, Sediyama GC, Silva TGFD (2015) Requerimento hídrico e coeficiente de cultura do milho e feijão-caupi em sistemas exclusivo e consorciado. Revista Caatinga 28, 151-160.
| Crossref | Google Scholar |