Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
REVIEW

Assessing the role of genetics for improving the yield of Australia’s major grain crops on acid soils

Peter R. Ryan
+ Author Affiliations
- Author Affiliations

CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT 2601, Australia. Email: Peter.Ryan@csiro.au

Crop and Pasture Science 69(3) 242-264 https://doi.org/10.1071/CP17310
Submitted: 28 August 2017  Accepted: 29 November 2017   Published: 22 February 2018

Abstract

Acid soils (pH <5.0) continue to limit the yields of Australia’s major crops and restrict their cultivation. These soils pose various abiotic stresses that restrict or affect plant growth in different ways. Chief among these stresses is aluminium (Al3+) toxicity, which inhibits root growth. Soil acidification can occur naturally but certain agricultural practices accelerate the process. The most effective management practice for slowing and reversing acidification is the application of lime (calcium carbonate). Liming has increased over the last 25 years but it can take several years to ameliorate subsoil acidity and the application rates in some areas remain too low to avoid further acidification. If left unmanaged, acidification will degrade agricultural land and cause larger yield losses in the future. Crops that are better adapted to acid soils are important resources because they help to maintain production while amelioration efforts continue. Significant genotypic variation for acid-soil tolerance has been reported in wheat, barley and pulse species and improvements to yield are likely by pyramiding the optimal genetic loci controlling this trait through breeding. Further increases in production might also be possible with wider crosses to related species and through genetic engineering. This review assesses the potential of genetics and biotechnology for increasing the yields of Australia’s major grain crops on acid soils.

Additional keywords: canola, genetic engineering, resistance, soil degradation, tolerance, yield gap.


References

AACM (1995) ‘Social and economic feasibility of ameliorating soil acidification: A national review.’ Prepared by AACM International. (Land and Water Resources Research and Development Corporation: Canberra, ACT)

ABARES (2016) Australian Crop Report No. 177. Australian Bureau of Agricultural and Resource Economics and Sciences, Canberra, ACT. Available at: http://www.agriculture.gov.au/abares/publications

Acid Soil Action (2001) Acid soil action in NSW. Acid Soil Action. NSW Agriculture, Orange, NSW. Available at: http://cavrep.com.au/A/acidsoilaction.pdf

Agriculture Victoria (2013) Growing faba bean. AG0083. Department of Environment and Primary Industries, Melbourne. Available at: http://agriculture.vic.gov.au/agriculture/grains-and-other-crops/crop-production/growing-faba-bean

Aguilera JG, Minozzo JAD, Barichello D, Fogaca CM, da Silva JP,, Consoli L, Pereira JF (2016) Alleles of organic acid transporter genes are highly correlated with wheat resistance to acidic soil in field conditions. Theoretical and Applied Genetics 129, 1317–1331.
Alleles of organic acid transporter genes are highly correlated with wheat resistance to acidic soil in field conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XkvVGntL0%3D&md5=9ddea425ffc416f7e55ea4d7021f0a64CAS |

Aniol A, Gustafson JP (1984) Chromosome location of genes controlling aluminum tolerance in wheat, rye and triticale. Canadian Journal of Genetics and Cytology 26, 701–705.
Chromosome location of genes controlling aluminum tolerance in wheat, rye and triticale.Crossref | GoogleScholarGoogle Scholar |

Barr NF, Cary JW (1992) ‘Greening a brown land, an Australian search for sustainable land use.’ (MacMillan: Melbourne)

Bates TR, Lynch JP (2001) Root hairs confer a competitive advantage under low phosphorus availability. Plant and Soil 236, 243–250.
Root hairs confer a competitive advantage under low phosphorus availability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptlKhu7w%3D&md5=104869ad3c79d33aa4ab3ae0fccbd858CAS |

Berzonsky WA (1992) The genomic inheritance of aluminium tolerance in ‘Atlas 66’ wheat. Genome 35, 689–693.
The genomic inheritance of aluminium tolerance in ‘Atlas 66’ wheat.Crossref | GoogleScholarGoogle Scholar |

Blair MW, Lopez-Marin HD, Rao IM (2009a) Identification of aluminum resistant Andean common bean (Phaseolus vulgaris L.) genotypes. Brazilian Journal of Plant Physiology 21, 291–300.
Identification of aluminum resistant Andean common bean (Phaseolus vulgaris L.) genotypes.Crossref | GoogleScholarGoogle Scholar |

Blair MW, Torres MM, Giraldo MC, Pedraza F (2009b) Development and diversity of Andean-derived, gene-based microsatellites for common bean (Phaseolus vulgaris L.). BMC Plant Biology 9, 100

Boddey LH, Hungria M (1997) Phenotypic grouping of Brazilian Bradyrhizobium strains which nodulate soybean. Biology and Fertility of Soils 25, 407–415.
Phenotypic grouping of Brazilian Bradyrhizobium strains which nodulate soybean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmvVOjtbw%3D&md5=039fbefcacaa50c24bedaa4697e469cfCAS |

Bona L, Carver BF (1992) Seedling tolerance to aluminum toxicity among winter-wheat (Triticum aestivum L.) genotypes. Novenytermeles 41, 381–391.

Brautigan D, Rengasamy P, Chittleborough D (2012) Aluminium speciation and phytotoxicity in alkaline soils. Plant and Soil 360, 187–196.
Aluminium speciation and phytotoxicity in alkaline soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFWisb7L&md5=29c57b6e5e6565dfa3803bfa8fa14284CAS |

Cai S, Bai G-H, Zhang D (2008) Quantitative trait loci for aluminum resistance in Chinese wheat landrace FSW. Theoretical and Applied Genetics 117, 49–56.
Quantitative trait loci for aluminum resistance in Chinese wheat landrace FSW.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtlWit74%3D&md5=342812e3cb5fbeca8e16d21f6661f53dCAS |

Camargo CEO (1981) Wheat breeding: I—Inheritance of tolerance to aluminum toxicity in wheat. Bragantia 40, 33–45.
Wheat breeding: I—Inheritance of tolerance to aluminum toxicity in wheat.Crossref | GoogleScholarGoogle Scholar |

Care DA (1995) The effect of aluminum concentration on root hairs in white clover (Trifolium repens L.). Plant and Soil 171, 159–162.
The effect of aluminum concentration on root hairs in white clover (Trifolium repens L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmsVCjs74%3D&md5=63fa9820391e9bae9d687b27a3c77acbCAS |

Chen Z, Fujii Y, Yamaji N, Masuda S, Takemoto Y, Kamiya T, Yusuyin Y, Iwasaki K, Kato S-I, Maeshima M, Ma JF, Ueno D (2013) Mn tolerance in rice is mediated by MTP8.1, a member of the cation diffusion facilitator family. Journal of Experimental Botany 64, 4375–4387.
Mn tolerance in rice is mediated by MTP8.1, a member of the cation diffusion facilitator family.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1ygs7fM&md5=ca11cfe76d9cd2a61f5f717f1521a673CAS |

Cosic T, Poljak M, Custic M, Rengel Z (1994) Aluminum tolerance of durum-wheat germplasm. Euphytica 78, 239–243.
Aluminum tolerance of durum-wheat germplasm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjsVCktbY%3D&md5=76ebd1c4e5aae06548e03102ec101a74CAS |

DAFWA (2013) Strategy review: soil acidity. Department of Agriculture and Food, Western Australia, South Perth, W. Aust. Available at: https://www.wheatbeltnrm.org.au/sites/default/files/basic_page/files/Acid%20soils.pdf

DAFWA (2017) Soil acidity in Western Australia. Department of Agriculture and Food, Western Australia, South Perth, W. Aust. Available at: www.agric.wa.gov.au/soil-acidity/soil-acidity-western-australia

Dang, Y, Moody, P (2013) Costs of soil-induced stress to the Australian grains industry. Report for the Grains Research and Development Corporation and Queensland Government.

Dang YP, Dalal RC, Buck SR, Harms B, Kelly R, Hochman Z, Schwenke GD, Biggs AJW, Ferguson NJ, Norrish S, Routley R, McDonald M, Hall C, Singh DK, Daniells IG, Farquharson R, Manning W, Speirs S, Grewal HS, Cornish P, Bodapati N, Orange D (2010) Diagnosis, extent, impacts, and management of subsoil constraints in the northern grains cropping region of Australia. Australian Journal of Soil Research 48, 105–119.
Diagnosis, extent, impacts, and management of subsoil constraints in the northern grains cropping region of Australia.Crossref | GoogleScholarGoogle Scholar |

Delane RJ, Nelson P, French RJ (1989) Roles of grain legumes in sustainable dryland cropping systems. In ‘Proceedings Australian Society of Agronomy Meeting’. Merredin, W. Aust. (Australian Society of Agronomy) Available at: http://agronomyaustraliaproceedings.org/images/sampledata/1989/invited/merredin-symposium/p-01.pdf

Delhaize E, Craig S, Beaton CD, Bennet RJ, Jagadish VC, Randall PJ (1993a) Aluminum tolerance in wheat (Triticum aestivum L.). 1. Uptake and distribution of aluminum in root apices. Plant Physiology 103, 685–693.
Aluminum tolerance in wheat (Triticum aestivum L.). 1. Uptake and distribution of aluminum in root apices.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXisFaisg%3D%3D&md5=eea9de9093226dbe6d5c721ff9b04c1fCAS |

Delhaize E, Ryan PR, Randall PJ (1993b) Aluminum tolerance in wheat (Triticum aestivum L.). 2. Aluminum-stimulated excretion of malic acid from root apices. Plant Physiology 103, 695–702.
Aluminum tolerance in wheat (Triticum aestivum L.). 2. Aluminum-stimulated excretion of malic acid from root apices.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXisFaisw%3D%3D&md5=5f214538a1b6f78200c9ad59279d98cdCAS |

Delhaize E, Ryan PR, Hebb DM, Yamamoto Y, Sasaki T, Matsumoto H (2004) Engineering high-level aluminum tolerance in barley with the ALMT1 gene. Proceedings of the National Academy of Sciences of the United States of America 101, 15249–15254.
Engineering high-level aluminum tolerance in barley with the ALMT1 gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpsVSgurc%3D&md5=88ea0b55b0459ab8073e73df154ddfa8CAS |

Delhaize E, James RA, Ryan PR (2012a) Aluminium tolerance of root hairs underlies genotypic differences in rhizosheath size of wheat (Triticum aestivum) grown on acid soil. New Phytologist 195, 609–619.
Aluminium tolerance of root hairs underlies genotypic differences in rhizosheath size of wheat (Triticum aestivum) grown on acid soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvVeisrY%3D&md5=3f112fa0a6376e1043e5d3dc4b204908CAS |

Delhaize E, Ma JF, Ryan PR (2012b) Transcriptional regulation of aluminium tolerance genes. Trends in Plant Science 17, 341–348.
Transcriptional regulation of aluminium tolerance genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xkslarurs%3D&md5=4814168ffaa9708cc2205645cacd53c6CAS |

DEWNR (2016) Soil acidity. Department of Energy, Water and Natural Resources, Adelaide, S. Aust. Available at: https://www.environment.sa.gov.au/Knowledge_Bank/Science_research/land-condition-sustainable-management/soil-acidity

Dolling P, Moody P, Noble I, Helyar K, Hughes B, Reuter D, Sparrow L (2001) Soil acidity and acidification in Australia. National Land and Water Resources Audit Project Report, Canberra, ACT.

Duncan M (1999) Pastures and acid soils. Acid Soil Action. NSW Agriculture, Orange, NSW. Available at: https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0007/162925/acid-soil.pdf

Dvořák J, Gorham J (1992) Methodology of gene-transfer by homoeologous recombination into Triticum turgidum transfer of K+/Na+ discrimination from Triticum aestivum. Genome 35, 639–646.
Methodology of gene-transfer by homoeologous recombination into Triticum turgidum transfer of K+/Na+ discrimination from Triticum aestivum.Crossref | GoogleScholarGoogle Scholar |

Environment and Natural Resources Committee (2004) Inquiry on the impact and trends in soil acidity. Parliamentary Paper No. 59, session 2003–2004. Parliament of Victoria, Melbourne.

Eticha D, Stass A, Horst WJ (2005a) Cell-wall pectin and its degree of methylation in the maize root-apex: significance for genotypic differences in aluminium resistance. Plant, Cell & Environment 28, 1410–1420.
Cell-wall pectin and its degree of methylation in the maize root-apex: significance for genotypic differences in aluminium resistance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Olu7rM&md5=3fa31273246dbb6ac0e93d283614da45CAS |

Eticha D, Stass A, Horst WJ (2005b) Localization of aluminium in the maize root apex: can morin detect cell wall-bound aluminium? Journal of Experimental Botany 56, 1351–1357.
Localization of aluminium in the maize root apex: can morin detect cell wall-bound aluminium?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXksVKmtrg%3D&md5=329b344a1be1f76c8378488d9963f193CAS |

Eticha D, The C, Welcker C, Narro L, Stass A, Horst WJ (2005c) Aluminium-induced callose formation in root apices: inheritance and selection trait for adaptation of tropical maize to acid soils. Field Crops Research 93, 252–263.
Aluminium-induced callose formation in root apices: inheritance and selection trait for adaptation of tropical maize to acid soils.Crossref | GoogleScholarGoogle Scholar |

Eticha D, Zahn M, Bremer M, Yang ZB, Rangel AF, Rao IM, Horst WJ (2010) Transcriptomic analysis reveals differential gene expression in response to aluminium in common bean (Phaseolus vulgaris) genotypes. Annals of Botany 105, 1119–1128.
Transcriptomic analysis reveals differential gene expression in response to aluminium in common bean (Phaseolus vulgaris) genotypes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnvVOqt7k%3D&md5=51ca224d12858a33529f3e0398d9c7e3CAS |

Ezaki B, Yamamoto Y, Matsumoto H (1995) Cloning and sequencing of the cDNAs induced by aluminum treatment and Pi starvation in cultured tobacco cells. Physiologia Plantarum 93, 11–18.
Cloning and sequencing of the cDNAs induced by aluminum treatment and Pi starvation in cultured tobacco cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXivFOhsr8%3D&md5=958d7d502bfef3f602fe37607b250f2eCAS |

Fecht-Christoffers MM, Maier P, Horst WJ (2003) Apoplastic peroxidases and ascorbate are involved in manganese toxicity and tolerance of Vigna unguiculata. Physiologia Plantarum 117, 237–244.
Apoplastic peroxidases and ascorbate are involved in manganese toxicity and tolerance of Vigna unguiculata.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitlKrsbk%3D&md5=63449fec98d924cc65e4fa6c43623bb3CAS |

Fischer RA (2015) Definitions and determination of crop yield, yield gaps, and of rates of change. Field Crops Research 182, 9–18.
Definitions and determination of crop yield, yield gaps, and of rates of change.Crossref | GoogleScholarGoogle Scholar |

Fischer T, Byerlee D, Edmeades G (2014) ‘Crop yields and global food security: will yield increase continue to feed the world?’ ACIAR Monograph No. 158. (Australian Centre for International Agricultural Research: Canberra, ACT)

Foy CD (1984) Physiological effects of hydrogen, aluminum, and manganese toxicities in acid soil. In ‘Soil acidity and liming’. 2nd edn (Ed. F Adams) pp. 57–97. (American Society of Agronomy, Crop Science Society, American Society of Soil Science: Madison, WI, USA)

Foy CD, Dasilva AR (1991) Tolerances of wheat germplasm to acid subsoil. Journal of Plant Nutrition 14, 1277–1295.
Tolerances of wheat germplasm to acid subsoil.Crossref | GoogleScholarGoogle Scholar |

French RJ, Sweetingham MW, Shea GG (2001) A comparison of the adaptation of yellow lupin (Lupinus luteus L.) and narrow-leafed lupin (L. angustifolius L.) to acid sandplain soils in low rainfall agricultural areas of Western Australia. Australian Journal of Agricultural Research 52, 945–954.
A comparison of the adaptation of yellow lupin (Lupinus luteus L.) and narrow-leafed lupin (L. angustifolius L.) to acid sandplain soils in low rainfall agricultural areas of Western Australia.Crossref | GoogleScholarGoogle Scholar |

Führs H, Goetze S, Specht A, Erban A, Gallien S, Heintz D, Van Dorsselaer A, Kopka J, Braun H-P, Horst WJ (2009) Characterization of leaf apoplastic peroxidases and metabolites in Vigna unguiculata in response to toxic manganese supply and silicon. Journal of Experimental Botany 60, 1663–1678.
Characterization of leaf apoplastic peroxidases and metabolites in Vigna unguiculata in response to toxic manganese supply and silicon.Crossref | GoogleScholarGoogle Scholar |

Führs H, Behrens C, Gallien S, Heintz D, Van Dorsselaer A, Braun H-P, Horst WJ (2010) Physiological and proteomic characterization of manganese sensitivity and tolerance in rice (Oryza sativa) in comparison with barley (Hordeum vulgare). Annals of Botany 105, 1129–1140.
Physiological and proteomic characterization of manganese sensitivity and tolerance in rice (Oryza sativa) in comparison with barley (Hordeum vulgare).Crossref | GoogleScholarGoogle Scholar |

Fujii M, Yamaji N, Sato K, Ma JF (2009) Mechanism regulating HvAACT1 expression in barley. In ‘Plant–soil interactions at low pH: a nutriomic approach. Proceedings 7th International Symposium of Plant–Soil Interactions at Low pH’. (Eds H Liao, X Yan, LV Kochian) pp. 165–166. (South China University of Technology Press: Guangzhou, China)

Furukawa J, Yamaji N, Wang H, Mitani N, Murata Y, Sato K, Katsuhara M, Takeda K, Ma JF (2007) An aluminum-activated citrate transporter in barley. Plant & Cell Physiology 48, 1081–1091.
An aluminum-activated citrate transporter in barley.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVKlsrrK&md5=6ed248562b443461032f64e838beeb30CAS |

Gahoonia TS, Nielsen NE (2003) Phosphorus (P) uptake and growth of a root hairless barley mutant (bald root barley, brb) and wild type in low- and high-P soils. Plant, Cell & Environment 26, 1759–1766.
Phosphorus (P) uptake and growth of a root hairless barley mutant (bald root barley, brb) and wild type in low- and high-P soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptlaht7c%3D&md5=c91dabb15291d2e6063de3a72d290dacCAS |

Garvin DF, Carver BF (2003) Role of genotype in tolerance to acidity and aluminum toxicity. In ‘Handbook of soil acidity’. (Ed. Z Rengel) pp. 387–406. (Marcel Dekker Inc.: New York)

Gazey, C (2015) Maintain soil pH targets to optimise production. GroundCover Supplement Issue 118: Soil management for profit. Grains Research and Development Corporation, Canberra, ACT. Available at: https://grdc.com.au/resources-and-publications/groundcover/ground-cover-supplements/ground-cover-issue-118-soil-constraints/maintain-soil-ph-rates-to-optimise-production

Gazey C, Andrew J, Griffin E (2013) Soil acidity. Report card on sustainable natural resource use in agriculture. Department of Agriculture and Food, Western Australia, South Perth, W. Aust. Available at: https://www.agric.wa.gov.au/sites/gateway/files/2.1%20Soil%20acidity.pdf

Gazey, C, Davies, S, Master, D (2014) Soil acidity: A guide for WA farmers and consultants. Bulletin 4858. Department of Agriculture and Food Western Australia, South Perth, W. Aust. Available at: https://researchlibrary.agric.wa.gov.au/bulletins/223/

Glenn AR, Dilworth MJ (1994) The life of root-nodule bacteria in the acidic underground. FEMS Microbiology Letters 123, 1–9.
The life of root-nodule bacteria in the acidic underground.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmslKhtbk%3D&md5=1efd2c608c734b02e626a90e34696a06CAS |

Graham PH, Vance CP (2003) Legumes: Importance and constraints to greater use. Plant Physiology 131, 872–877.
Legumes: Importance and constraints to greater use.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXisFemtb4%3D&md5=319e7b24d7174672512594a5a88b8fbaCAS |

Graham PH, Viteri SE, Mackie F, Vargas AT, Palacios A (1982) Variation in acid soil tolerance among strains of Rhizobium phaseoli. Field Crops Research 5, 121–128.
Variation in acid soil tolerance among strains of Rhizobium phaseoli.Crossref | GoogleScholarGoogle Scholar |

GRDC (2015) Field peas. GRDC GrowNotes. Grains Research and Development Corporation, Canberra, ACT.

Guo JH, Liu XJ, Zhang Y, Shen JL, Han WX, Zhang WF, Christie P, Goulding KWT, Vitousek PM, Zhang FS (2010) Significant acidification in major Chinese croplands. Science 327, 1008–1010.
Significant acidification in major Chinese croplands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitVSjtbg%3D&md5=ebaf42913a3dfcf6365b2be3dec7af7cCAS |

Hajkowicz SA, Young MD (2005) Costing yield from acidity, sodicity and dryland salinity to Australia. Land Degradation & Development 16, 417–433.
Costing yield from acidity, sodicity and dryland salinity to Australia.Crossref | GoogleScholarGoogle Scholar |

Hajkowvicz SA, Young MD (2002) Value of returns to land and water and costs of degradation. A report to the National Land and Water Resources Audit by the Policy and Economic Research Unit of CSIRO Land and Water. CSIRO Land and Water, Adelaide, S. Aust. Available at: http://www.clw.csiro.au/publications/consultancy/2002/Theme6.1_Audit_Report_Executive_Summary.pdf

Han C, Ryan PR, Yan Z, Delhaize E (2014) Introgression of a 4D chromosomal fragment into durum wheat confers aluminium tolerance. Annals of Botany 114, 135–144.
Introgression of a 4D chromosomal fragment into durum wheat confers aluminium tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFSrt7bM&md5=66dafe1b36a66a62d9949bdef8c646e2CAS |

Han C, Zhang P, Ryan PR, Rathjen TM, Yan Z, Delhaize E (2016) Introgression of genes from bread wheat enhances the aluminium tolerance of durum wheat. Theoretical and Applied Genetics 129, 729–739.
Introgression of genes from bread wheat enhances the aluminium tolerance of durum wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XpsFyhuw%3D%3D&md5=282c8c4eb0fdfec6be5120402d9aefa1CAS |

Harries M, Anderson GC, Hueberli D (2015) Crop sequences in Western Australia: what are they and are they sustainable? Findings of a four-year survey. Crop & Pasture Science 66, 634–647.
Crop sequences in Western Australia: what are they and are they sustainable? Findings of a four-year survey.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXpt1Kksr4%3D&md5=4b9754a0ece3ec04a76d662e949b21b9CAS |

Herbert A (2009) Opportunity cost of land degradation hazard in the south-west agricultural region. Research Management Technical Reports. Department of Agriculture and Food Western Australia, South Perth, W. Aust. Available at: https://researchlibrary.agric.wa.gov.au/cgi/viewcontent.cgi?referer=https://www.google.com.au/&httpsredir=1&article=1330&context=rmtr

Hill, N (2015) Acid soils on the rise across NSW. GroundCover Supplement Issue 118: Soil management for profit: Soil constraints. Grains Research and Development Corporation, Canberra, ACT. Available at: https://grdc.com.au/resources-and-publications/groundcover/ground-cover-supplements/ground-cover-issue-118-soil-constraints/acid- soils-on-the-rise-across-nsw

Hiradate S, Ma JF, Matsumoto H (2007) Strategies of plants to adapt to mineral stresses in problem soils. Advances in Agronomy 96, 65–132.
Strategies of plants to adapt to mineral stresses in problem soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktlyis7c%3D&md5=fa9232ab7ebf9820b2e00b4fb0d8b34bCAS |

Hochman Z, Gobbett D, Horan H, Navarro-Garcia J (2015) Visualizing yield gaps in Australia’s wheat cropping zone. In ‘Proceedings Australian Society of Agronomy Conference’. Hobart, Tas. (Australian Society of Agronomy) Available at: http://www.agronomy2015.com.au/papers/agronomy2015final00335.pdf

Horst WJ, Wang YX, Eticha D (2010) The role of the root apoplast in aluminium-induced inhibition of root elongation and in aluminium resistance of plants: a review. Annals of Botany 106, 185–197.
The role of the root apoplast in aluminium-induced inhibition of root elongation and in aluminium resistance of plants: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVWjsbw%3D&md5=c7b29c30461980ffb5c0b8ae5fdbceacCAS |

Huang B, Liu Y, Xue X, Chang L (2002) Comparison of aluminium tolerance in the brassicas and related species. Plant Breeding 121, 360–362.
Comparison of aluminium tolerance in the brassicas and related species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xoslynsbs%3D&md5=8817acb74527d69f2665e07439e1e883CAS |

Hungria M, Campo RJ, Mendes IC (2003) Benefits of inoculation of the common bean (Phaseolus vulgaris) crop with efficient and competitive Rhizobium tropici strains. Biology and Fertility of Soils 39, 88–93.
Benefits of inoculation of the common bean (Phaseolus vulgaris) crop with efficient and competitive Rhizobium tropici strains.Crossref | GoogleScholarGoogle Scholar |

Iuchi S, Koyama H, Iuchi A, Kobayashi Y, Kitabayashi S, Ikka T, Hirayama T, Shinozaki K, Kobayashi M (2007) Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and corregulates a key gene in aluminum tolerance. Proceedings of the National Academy of Sciences of the United States of America 104, 9900–9905.
Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and corregulates a key gene in aluminum tolerance.Crossref | GoogleScholarGoogle Scholar |

James RA, Weligama C, Verbyla K, Ryan PR, Rebetzke GJ, Rattey A, Richardson AE, Delhaize E (2016) Rhizosheaths on wheat grown in acid soils: phosphorus acquisition efficiency and genetic control. Journal of Experimental Botany 67, 3709–3718.
Rhizosheaths on wheat grown in acid soils: phosphorus acquisition efficiency and genetic control.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsF2jsr7L&md5=4fd0b1772f138bec5f8dd29c17dacaf2CAS |

Johnston C (2013) Litmus barley demonstration. Liebe Group, Dalwallinu, W. Aust. Available at: http://www.farmtrials.com.au/trial/10661

Jones DL, Shaff JE, Kochian LV (1995) Role of calcium and other ions in directing root in directing root hair tip growth in Limnobium stoloniferum. 1. Inhibition of tip growth by aluminum. Planta 197, 672–680.
Role of calcium and other ions in directing root in directing root hair tip growth in Limnobium stoloniferum. 1. Inhibition of tip growth by aluminum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpvVCmsLk%3D&md5=0747420d19d1c94ef1e06bb36a784d45CAS |

Joppa LR, Williams ND (1988) Langdon durum disomic substitution lines and aneuploid analysis in tetraploid wheat. Genome 30, 222–228.
Langdon durum disomic substitution lines and aneuploid analysis in tetraploid wheat.Crossref | GoogleScholarGoogle Scholar |

Kataoka T, Mori M, Nakanishi TM, Matsumoto S, Uchiumi A (1997) Highly sensitive analytical method for aluminum movement in soybean root through lumogallion staining. Journal of Plant Research 110, 305–309.
Highly sensitive analytical method for aluminum movement in soybean root through lumogallion staining.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXns1yhtro%3D&md5=b9d793d867fd40c560bf097945590126CAS |

Kataoka T, Stekelenburg A, Nakanishi TM, Delhaize E, Ryan PR (2002) Several lanthanides activate malate efflux from roots of aluminium-tolerant wheat. Plant, Cell & Environment 25, 453–460.
Several lanthanides activate malate efflux from roots of aluminium-tolerant wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XisFOltb0%3D&md5=15302d20b86db244f6b8f1910bcf3b3aCAS |

Kinraide TB, Parker DR, Zobel RW (2005) Organic acid secretion as a mechanism of aluminium resistance: a model incorporating the root cortex, epidermis, and the external unstirred layer. Journal of Experimental Botany 56, 1853–1865.
Organic acid secretion as a mechanism of aluminium resistance: a model incorporating the root cortex, epidermis, and the external unstirred layer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpvFKntLo%3D&md5=e8a85c001511d6b48c7fcad3a98b4fb9CAS |

Kneipp J (2008) ‘Durum wheat production.’ (NSW Department of Primary Industries: Orange, NSW) Available at: https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0010/280855/Durum-wheat-production-report.pdf

Kochian LV, Hoekenga OA, Piñeros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorus efficiency. Annual Review of Plant Biology 55, 459–493.
How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorus efficiency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvFeisLg%3D&md5=02c797a49454fb62b08f180a8e733c8bCAS |

Kochian LV, Pineros MA, Hoekenga OA (2005) The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant and Soil 274, 175–195.
The physiology, genetics and molecular biology of plant aluminum resistance and toxicity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVWiurfN&md5=82bbd7f57bd338338730e1d15886fe94CAS |

Kochian LV, Pineros MA, Liu J, Magalhaes JV (2015) Plant adaptation to acid soils: The molecular basis for crop aluminum resistance. Annual Review of Plant Biology 66, 571–598.
Plant adaptation to acid soils: The molecular basis for crop aluminum resistance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVajtbnP&md5=4ed4da5ffeac86d44787de46e053de2cCAS |

Korir PC, Zhang J, Wu K, Zhao T, Gai J (2013) Association mapping combined with linkage analysis for aluminum tolerance among soybean cultivars released in Yellow and Changjiang River Valleys in China. Theoretical and Applied Genetics 126, 1659–1675.
Association mapping combined with linkage analysis for aluminum tolerance among soybean cultivars released in Yellow and Changjiang River Valleys in China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXoslWhsrg%3D&md5=684d9b2f3f0a5177eb4cf3f577c97578CAS |

Li XF, Zuo FH, Ling GZ, Li YY, Yu YX, Yang PQ, Tang XL (2009) Secretion of citrate from roots in response to aluminum and low phosphorus stresses in Stylosanthes. Plant and Soil 325, 219–229.
Secretion of citrate from roots in response to aluminum and low phosphorus stresses in Stylosanthes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFSrt7nF&md5=6b2cf21b9f76a3c3f449aa7400b450ddCAS |

Liao H, Wan HY, Shaff J, Wang XR, Yan XL, Kochian LV (2006) Phosphorus and aluminum interactions in soybean in relation to aluminum tolerance, exudation of specific organic acids from different regions of the intact root system. Plant Physiology 141, 674–684.
Phosphorus and aluminum interactions in soybean in relation to aluminum tolerance, exudation of specific organic acids from different regions of the intact root system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xmt1aktLg%3D&md5=7b8a5fa43def920c62e3ce48e22aeec4CAS |

Ligaba A, Katsuhara M, Ryan PR, Shibasaka M, Matsumoto H (2006) The BnALMT1 and BnALMT2 genes from rape encode aluminum-activated malate transporters that enhance the aluminum resistance of plant cells. Plant Physiology 142, 1294–1303.
The BnALMT1 and BnALMT2 genes from rape encode aluminum-activated malate transporters that enhance the aluminum resistance of plant cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1eju7%2FP&md5=5b9a79bc7e61057d05b2c4a30b588383CAS |

Ligaba A, Dreyer I, Margaryan A, Schneider DJ, Kochian L, Pineros M (2013) Functional, structural and phylogenetic analysis of domains underlying the Al sensitivity of the aluminum-activated malate/anion transporter, TaALMT1. The Plant Journal 76, 766–780.
Functional, structural and phylogenetic analysis of domains underlying the Al sensitivity of the aluminum-activated malate/anion transporter, TaALMT1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVGgsrvP&md5=a466c6b223cb594c19452835367491c8CAS |

Liu JP, Magalhaes JV, Shaff J, Kochian LV (2009) Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. The Plant Journal 57, 389–399.
Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXit1KitLk%3D&md5=7c70e9075c0bc46d2288a428c13adbafCAS |

Liu M, Xu J, Lou H, Fan W, Yang J, Zheng S (2016) Characterization of VuMATE1 expression in response to iron nutrition and aluminum stress reveals adaptation of rice bean (Vigna umbellata) to acid soils through Cis regulation. Frontiers in Plant Science 7, 511

Lockwood P, Wilson B, Daniel H, Jones M (2003) ‘Soil acidification and natural resource management: directions for the future.’ (University of New England: Armidale, NSW)

Lofton J, Godsey CB, Zhang H (2010) Determining aluminum tolerance and critical soil pH for winter canola production for acidic soils in temperate regions. Agronomy Journal 102, 327–332.
Determining aluminum tolerance and critical soil pH for winter canola production for acidic soils in temperate regions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvFSku74%3D&md5=ae3284e874ee7d5e4611ccdfa2744113CAS |

Luo MC, Dvorak J (1996) Molecular mapping of an aluminum tolerance locus on chromosome 4D of Chinese Spring wheat. Euphytica 91, 31–35.
Molecular mapping of an aluminum tolerance locus on chromosome 4D of Chinese Spring wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmvFKnt7k%3D&md5=fb35427022392e56f6abccaa27bcda68CAS |

Luo MC, Dubcovsky J, Goyal S, Dvorak J (1996) Engineering of interstitial foreign chromosome segments containing the K+/Na+ selectivity gene Kna1 by sequential homoeologous recombination in durum wheat. Theoretical and Applied Genetics 93, 1180–1184.
Engineering of interstitial foreign chromosome segments containing the K+/Na+ selectivity gene Kna1 by sequential homoeologous recombination in durum wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXpvF2mug%3D%3D&md5=e043bc5fb47fbfa3301f10e1226a1bbaCAS |

Ma JF (2005) Physiological mechanisms of at resistance in higher plants. Soil Science and Plant Nutrition 51, 609–612.
Physiological mechanisms of at resistance in higher plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFyqtL3K&md5=1f2b4da49a98ff00e11c28965def4589CAS |

Ma JF, Hiradate S (2000) Form of aluminium for uptake and translocation in buckwheat (Fagopyrum esculentum Moench). Planta 211, 355–360.
Form of aluminium for uptake and translocation in buckwheat (Fagopyrum esculentum Moench).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlsVWqs7Y%3D&md5=f04c004db8710ceffe20f3bccd7e38bfCAS |

Ma JF, Ryan PR, Delhaize E (2001) Aluminium tolerance in plants and the complexing role of organic acids. Trends in Plant Science 6, 273–278.
Aluminium tolerance in plants and the complexing role of organic acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsFyjsL0%3D&md5=2890e81b0b0cc8f98f7eff972eccaa64CAS |

Ma G, Rengasamy P, Rathjen AJ (2003) Phytotoxicity of aluminium to wheat plants in high-pH solutions. Australian Journal of Experimental Agriculture 43, 497–501.
Phytotoxicity of aluminium to wheat plants in high-pH solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlslOnsbc%3D&md5=0a50a2d8b36fe8e1eb3cb8944611f9e9CAS |

Ma JF, Nagao S, Sato K, Ito H, Furukawa J, Takeda K (2004) Molecular mapping of a gene responsible for Al-activated secretion of citrate in barley. Journal of Experimental Botany 55, 1335–1341.
Molecular mapping of a gene responsible for Al-activated secretion of citrate in barley.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkvVSrtro%3D&md5=ddded099e3dff23417e46ae511761436CAS |

Ma Y, Li C, Ryan PR, Shabala S, You J, Liu J, Liu C, Zhou M (2016) A new allele for aluminium tolerance gene in barley (Hordeum vulgare L.). BMC Genomics 17, 186
A new allele for aluminium tolerance gene in barley (Hordeum vulgare L.).Crossref | GoogleScholarGoogle Scholar |

Magalhaes JV (2010) How a microbial drug transporter became essential for crop cultivation in acid soils. Aluminum tolerance conferred by the multidrug and toxic compound efflux (MATE) family. Annals of Botany 106, 199–203.
How a microbial drug transporter became essential for crop cultivation in acid soils. Aluminum tolerance conferred by the multidrug and toxic compound efflux (MATE) family.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVWjsb8%3D&md5=f1f88dcd77dc941fcb17628d45698972CAS |

Magalhaes JV, Liu J, Guimaraes CT, Lana UGP, Alves VMC, Wang YH, Schaffert RE, Hoekenga OA, Pineros MA, Shaff JE, Klein PE, Carneiro NP, Coelho CM, Trick HN, Kochian LV (2007) A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nature Genetics 39, 1156–1161.
A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXps12gtL8%3D&md5=7312237ab45b5246695ad4499565a197CAS |

Maron LG, Kirst M, Mao C, Milner MJ, Menossi M, Kochian LV (2008) Transcriptional profiling of aluminum toxicity and tolerance responses in maize roots. New Phytologist 179, 116–128.
Transcriptional profiling of aluminum toxicity and tolerance responses in maize roots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXosFWhtrs%3D&md5=0956f62e3566b777f3ef41ba29fcbe7eCAS |

Marschner H (1991) Mechanisms of adaptation of plants to acid soils. Plant and Soil 134, 1–20.
Mechanisms of adaptation of plants to acid soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXltFenu7s%3D&md5=0c4ac75cad832743e5b0ec67d3a772d9CAS |

Marschner H (1995) ‘Mineral nutrition of higher plants.’ (Harcourt Brace & Company: London)

Masters B (2015) Managing soil acidity on Eyre Peninsula. Project Report. Rural Solutions SA. Primary Industries and Regions South Australia, Adelaide, S. Aust.

Matsumoto H (2000) Cell biology of aluminum toxicity and tolerance in higher plants. In ‘International review of cytology—a survey of cell biology’. Vol. 200. pp. 1–46. (Elsevier: Amsterdam)

Matsumoto H, Hirasawa E, Morimura S, Takahashi E (1976) Localization of aluminum in tea leaves. Plant & Cell Physiology 17, 627–631.

McCaffery, D, Potter, T, Marcroft, S, Pritchard, F (2009) ‘Canola best practice management for south-eastern Australia.’ (Grains Research and Development Corporation: Canberra, ACT) Available at: https://grdc.com.au/__data/assets/pdf_file/0016/202615/grdccanolaguide.pdf

Minella E, Sorrells ME (1992) Aluminum tolerance in barley: genetic relationships among genotypes of diverse origin. Crop Science 32, 593–598.
Aluminum tolerance in barley: genetic relationships among genotypes of diverse origin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XltVygsb8%3D&md5=f8cc1d5dde8b0434e6f5bf65afb62f74CAS |

Miyasaka SC, Buta JG, Howell RK, Foy CD (1991) Mechanism of aluminum tolerance in snapbeans—root exudation of citric acid. Plant Physiology 96, 737–743.
Mechanism of aluminum tolerance in snapbeans—root exudation of citric acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXltVyitro%3D&md5=081b2c26dcab767ae382df88dd60c725CAS |

Moroni JS, Briggs KG, Taylor GJ (1991) Pedigree analysis of the origin of manganese tolerance in Canadian spring wheat (Triticum aestivum L.) cultivars. Euphytica 56, 107–120.
Pedigree analysis of the origin of manganese tolerance in Canadian spring wheat (Triticum aestivum L.) cultivars.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XisFahur8%3D&md5=e2c7b901de4ff4883cc998f98cfdd31aCAS |

Moroni JS, Conyers M, Scott BJ, Wratten N (2002) Selection of rapeseed (Brassica napus L.) germplasm resistant to high manganese. In ‘Acid soil action. Research report 2002’. (Ed. G Fenton) (NSW Agriculture: Wagga Wagga, NSW)

Moroni JS, Scott BJ, Wratten N (2003) Differential tolerance of high manganese among rapeseed genotypes. Plant and Soil 253, 507–519.
Differential tolerance of high manganese among rapeseed genotypes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlsFKqs7g%3D&md5=446a541c5a2a50f1583ef33791c7f71aCAS |

Moroni JS, Conyers M, Wratten N (2006) Resistance of rapeseed (Brassica napus L.) to aluminium apparent in nutrient solution but not in soil. In ‘Proceedings 13th Australian Agronomy Conference’. (Australian Society of Agronomy/The Regional Institute: Gosford, NSW) Available at: http://www.regional.org.au/au/asa/2006/poster/soil/4718_moronij.htm

Mugwira LM, Elgawhary SM, Patel KI (1976) Differential tolerances of triticale, wheat, rye and barley to aluminum in nutrient solution. Agronomy Journal 68, 782–787.
Differential tolerances of triticale, wheat, rye and barley to aluminum in nutrient solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XlvFWgu7s%3D&md5=af1f98e140b5c79561df233c73c263b2CAS |

Navakode S, Weidner A, Lohwasser U, Roder MS, Borner A (2009) Molecular mapping of quantitative trait loci (QTLs) controlling aluminium tolerance in bread wheat. Euphytica 166, 283–290.
Molecular mapping of quantitative trait loci (QTLs) controlling aluminium tolerance in bread wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFOitr8%3D&md5=c4c5a2fa94e4ea0103e0f29fe228e7e7CAS |

Navakode S, Neumann K, Kobiljski B, Lohwasser U, Borner A (2014) Genome wide association mapping to identify aluminium tolerance loci in bread wheat. Euphytica 198, 401–411.
Genome wide association mapping to identify aluminium tolerance loci in bread wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmsV2ru7k%3D&md5=3e12751725b72aee3ab9c7544bc0d3bcCAS |

Nian H, Yang ZM, Huang H, Yan XL, Matsumoto H (2005) Citrate secretion induced by aluminum stress may not be a key mechanism responsible for differential aluminum tolerance of some soybean genotypes. Journal of Plant Nutrition 27, 2047–2066.
Citrate secretion induced by aluminum stress may not be a key mechanism responsible for differential aluminum tolerance of some soybean genotypes.Crossref | GoogleScholarGoogle Scholar |

NLWRA (2001) National Land and Water Resources Audit. Land and Water Australia, Canberra, ACT.

Oilseeds WA (2006) Growing western canola: An overview of production in Western Australia. Oilseeds Industry Association of Western Australia, Belmont, W. Aust. Available at: http://www.australianoilseeds.com/__data/assets/pdf_file/0003/2685/Growing_Western_Canola_May_2006.pdf.

Ownby JD (1993) Mechanisms of reaction of hematoxylin with aluminum-treated wheat roots. Physiologia Plantarum 87, 371–380.
Mechanisms of reaction of hematoxylin with aluminum-treated wheat roots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXkt1antb0%3D&md5=d8dbfdfbe083f2f56896728f2e088cd1CAS |

Papernik LA, Bethea AS, Singleton TE, Magalhaes JV, Garvin DF, Kochian LV (2001) Physiological basis of reduced Al tolerance in ditelosomic Lines of Chinese Spring wheat. Planta 212, 829–834.
Physiological basis of reduced Al tolerance in ditelosomic Lines of Chinese Spring wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXisFWjsL8%3D&md5=1b495b483e51349c81189136c16b2495CAS |

Paynter BH (2014) Litmus barley improved tolerance to soil acidity. GRDC Update Papers. Grains Research and Development Corporation, Canberra, ACT.

Penaloza HE, Corcuera LJ, Martinez OJ, Montenegro BA, Santen Ev, Wink M, Weissmann S, Romer P (2000) Differential aluminum tolerance of lupin species grown in soil and in nutrient solution. In ‘Lupin, an ancient crop for the new millennium. Proceedings 9th International Lupin Conference’. Klink/Müritz. (International Lupin Association: Canterbury, New Zealand)

Pereira JF, Zhou G, Delhaize E, Richardson T, Ryan PR (2010) Engineering greater aluminium resistance in wheat by over-expressing TaALMT1. Journal of Experimental Botany 106, 205–214.

Pineros MA, Cancado GMA, Kochian LV (2008) Novel properties of the wheat aluminum tolerance organic acid transporter (TaALMT1) revealed by electrophysiological characterization in Xenopus oocytes: Functional and structural implications. Plant Physiology 147, 2131–2146.
Novel properties of the wheat aluminum tolerance organic acid transporter (TaALMT1) revealed by electrophysiological characterization in Xenopus oocytes: Functional and structural implications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVSrtrvP&md5=ef6aaadbe20d119515ae104a3a89a34fCAS |

Poile G, Oates A, Moroni S, Lowrie R, Conyers M, Swan T, Peoples M, Angus J, Kirkegaard J, Condon K, Durham K, Breust P, Armstrong R, Nuttall J (2012) Canola and subsoil constraints. Technical Bulletin. EH Graham Centre for Agricultural Innovation. Available at: https://www.csu.edu.au/__data/assets/pdf_file/0003/922764/Canola_-and-_subsoil_constraints.pdf

Polle E, Konzak CF, Kittrick JA (1978) Visual detection of aluminum tolerance levels in wheat by hematoxylin staining of seedling roots. Crop Science 18, 823–827.
Visual detection of aluminum tolerance levels in wheat by hematoxylin staining of seedling roots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXjsl2mtQ%3D%3D&md5=aace875a5ebc90a65f10b4affafd6cc0CAS |

Pulse Australia (2015) Australian pulse crop forecast. Pulse Australia, Sydney. Available at: http://www.pulseaus.com.au/storage/app/media/markets/20150209_Australian-Pulse-Crop-Forecast.pdf

Raman H, Karakousis A, Moroni JS, Raman R, Read BJ, Garvin DF, Kochian LV, Sorrells ME (2003) Development and allele diversity of microsatellite markers linked to the aluminium tolerance gene Alp in barley. Australian Journal of Agricultural Research 54, 1315–1321.
Development and allele diversity of microsatellite markers linked to the aluminium tolerance gene Alp in barley.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvV2mtbk%3D&md5=bdb50a4b5f491b8b4b91b7b959078b63CAS |

Raman H, Raman R, McVittie B, Orchard B, Qiu Y, Delourme R (2017) A major locus for manganese tolerance maps on chromosome A09 in a doubled haploid population of Brassica napus L. Frontiers of Plant Science 8, 1952
A major locus for manganese tolerance maps on chromosome A09 in a doubled haploid population of Brassica napus L.Crossref | GoogleScholarGoogle Scholar |

Raman H, Zhang KR, Cakir M, Appels R, Garvin DF, Maron LG, Kochian LV, Moroni JS, Raman R, Imtiaz M, Drake-Brockman F, Waters I, Martin P, Sasaki T, Yamamoto Y, Matsumoto H, Hebb DM, Delhaize E, Ryan PR (2005) Molecular characterization and mapping of ALMT1, the aluminium-tolerance gene of bread wheat (Triticum aestivum L.). Genome 48, 781–791.
Molecular characterization and mapping of ALMT1, the aluminium-tolerance gene of bread wheat (Triticum aestivum L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkslSnug%3D%3D&md5=78bd75487e6bf3e47abc881669aa7fb2CAS |

Raman H, Ryan PR, Raman R, Stodart BJ, Zhang K, Martin P, Wood R, Sasaki T, Yamamoto Y, Mackay M, Hebb DM, Delhaize E (2008) Analysis of TaALMT1 traces the transmission of aluminum resistance in cultivated common wheat (Triticum aestivum L.). Theoretical and Applied Genetics 116, 343–354.
Analysis of TaALMT1 traces the transmission of aluminum resistance in cultivated common wheat (Triticum aestivum L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXps1Shug%3D%3D&md5=0593a7bad8b5e31a6f030092870bdf4cCAS |

Raman H, Stodart B, Ryan PR, Delhaize E, Emebiri L, Raman R, Coombes N, Milgate A (2010) Genome-wide association analyses of common wheat (Triticum aestivum L.) germplasm identifies multiple loci for aluminium resistance. Genome 53, 957–966.
Genome-wide association analyses of common wheat (Triticum aestivum L.) germplasm identifies multiple loci for aluminium resistance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVansL3F&md5=ff67de6a70e8837ab1d3a62893a3ff0aCAS |

Rangel AF, Rao IM, Braun HP, Horst WJ (2010) Aluminum resistance in common bean (Phaseolus vulgaris) involves induction and maintenance of citrate exudation from root apices. Physiologia Plantarum 138, 176–190.
Aluminum resistance in common bean (Phaseolus vulgaris) involves induction and maintenance of citrate exudation from root apices.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVOks7g%3D&md5=af32fc8facdf28821f136f533aba690dCAS |

Read BJ, Oram RN, Potter TD, Doyle AD (1988) Breeding barleys for acid soils. In ‘Proceedings 9th Australian Plant Breeding Conference’. Wagga Wagga, NSW. (Organising Committee, Agricultural Research Institute: Wagga Wagga, NSW)

Reid DA, Jones GD, Armiger WH, Foy CD, Koch EJ, Starling TM (1969) Differential aluminum tolerance of winter barley varieties and selections in associated greenhouse and field experiments. Agronomy Journal 61, 218–222.
Differential aluminum tolerance of winter barley varieties and selections in associated greenhouse and field experiments.Crossref | GoogleScholarGoogle Scholar |

Rengel Z (2000) Manganese uptake and transport in plants. In ‘Metal ions in biological systems, Vol. 37: Manganese and its role in biological processes’. (Eds A Sigel, H Sigel) pp. 57–87. (CRC Press: Boca Raton, FL, USA)

Richardson AE, Djordjevic MA, Rolfe BG, Simpson RJ (1989) Expression of nodulation genes in Rhizobium and acid-sensitvity of nodule formation. Australian Journal of Plant Physiology 16, 117–129.
Expression of nodulation genes in Rhizobium and acid-sensitvity of nodule formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXlvVOqurw%3D&md5=bed3f8719d81d56655fd8cc7acb8d9b6CAS |

Riede CR, Anderson JA (1996) Linkage of RFLP markers to an aluminum tolerance gene in wheat. Crop Science 36, 905–909.
Linkage of RFLP markers to an aluminum tolerance gene in wheat.Crossref | GoogleScholarGoogle Scholar |

Rincon M, Gonzales RA (1992) Aluminum partitioning in intact roots of aluminum-tolerant and aluminum-sensitive wheat (Triticum aestivum L.) cultivars. Plant Physiology 99, 1021–1028.
Aluminum partitioning in intact roots of aluminum-tolerant and aluminum-sensitive wheat (Triticum aestivum L.) cultivars.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XlsVGjt74%3D&md5=3fd713a6ff420e971657884f36fe1ed0CAS |

Ryan PR, DiTomaso JM, Kochian LV (1993) Aluminum toxicity in roots: Investigation of spatial sensitivity and the role of the root cap. Journal of Experimental Botany 44, 437–446.
Aluminum toxicity in roots: Investigation of spatial sensitivity and the role of the root cap.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXitVOisrk%3D&md5=f4a757d923371f58293d094a5c19e0cdCAS |

Ryan PR, Delhaize E, Randall PJ (1995) Characterization of Al-stimulated efflux of malate from the apices of Al-tolerant wheat roots. Planta 196, 103–110.
Characterization of Al-stimulated efflux of malate from the apices of Al-tolerant wheat roots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXkvVemsLg%3D&md5=cdeea4dc780d43a43e8469f622cfb6d7CAS |

Ryan PR, Skerrett M, Findlay GP, Delhaize E, Tyerman SD (1997) Aluminum activates an anion channel in the apical cells of wheat roots. Proceedings of the National Academy of Sciences of the United States of America 94, 6547–6552.
Aluminum activates an anion channel in the apical cells of wheat roots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjvFGnt7c%3D&md5=44fdfd566f4d3ec36b794dcd7065c20fCAS |

Ryan PR, Delhaize E, Jones DL (2001) Function and mechanism of organic anion exudation from plant roots. Annual Review of Plant Physiology and Plant Molecular Biology 52, 527–560.
Function and mechanism of organic anion exudation from plant roots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkslWgsbg%3D&md5=97aa21bb73a567a7f53fca853e3e2a51CAS |

Ryan PR, Raman H, Gupta S, Horst WJ, Delhaize E (2009) A second mechanism for aluminum resistance in wheat relies on the constitutive efflux of citrate from roots. Plant Physiology 149, 340–351.
A second mechanism for aluminum resistance in wheat relies on the constitutive efflux of citrate from roots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjt1Wqt7w%3D&md5=b28b0d03aa87d0007a8ca5c3c64e1af0CAS |

Ryan PR, Raman H, Gupta S, Sasaki T, Yamamoto Y, Delhaize E (2010) The multiple origins of aluminium resistance in hexaploid wheat include Aegilops tauschii and more recent cis mutations to TaALMT1. The Plant Journal 64, 446–455.
The multiple origins of aluminium resistance in hexaploid wheat include Aegilops tauschii and more recent cis mutations to TaALMT1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFSnt73O&md5=453a4b79804849a2d92e036ac94bb1dbCAS |

Ryan PR, Tyerman SD, Sasaki T, Furuichi T, Yamamoto Y, Zhang WH, Delhaize E (2011) The identification of aluminium-resistance genes provides opportunities for enhancing crop production on acid soils. Journal of Experimental Botany 62, 9–20.
The identification of aluminium-resistance genes provides opportunities for enhancing crop production on acid soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFamu77K&md5=8aaf47c69a068346200286b0bc6c7a6dCAS |

Sadras VO, Cassman KG, Grassini P, Hall AJ, Bastiaanssen WGM, Laborte AG, Milne AE, Sileshi G, Steduto P (2015) ‘Yield gap analysis of rainfed and irrigated crops: Methods and case studies.’ FAO Water Report 41. (Food and Agriculture Organization of the United Nations: Rome)

Salisbury PA, Cowling WA, Potter TD (2016) Continuing innovation in Australian canola breeding. Crop & Pasture Science 67, 266–272.
Continuing innovation in Australian canola breeding.Crossref | GoogleScholarGoogle Scholar |

Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H (2004) A wheat gene encoding an aluminum-activated malate transporter. The Plant Journal 37, 645–653.
A wheat gene encoding an aluminum-activated malate transporter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXislyltr4%3D&md5=1273e62b7e98020978e7b33e8222419fCAS |

Sasaki T, Ryan PR, Delhaize E, Hebb DM, Ogihara Y, Kawaura K, Noda K, Kojima T, Toyoda A, Matsumoto H, Yamamoto Y (2006) Sequence upstream of the wheat (Triticum aestivum L.) ALMT1 gene and its relationship to aluminum resistance. Plant & Cell Physiology 47, 1343–1354.
Sequence upstream of the wheat (Triticum aestivum L.) ALMT1 gene and its relationship to aluminum resistance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1WhtL3M&md5=49974f9a0ff70291bd27ee72644cb6d1CAS |

Sasaki A, Yamaji N, Xia J, Ma JF (2011) OsYSL6 is involved in the detoxification of excess manganese in rice. Plant Physiology 157, 1832–1840.
OsYSL6 is involved in the detoxification of excess manganese in rice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1ektL%2FN&md5=f2c77417c5ae6f3c83e4a138629427feCAS |

Sasaki T, Tsuchiya Y, Ariyoshi M, Ryan PR, Furuichi T, Yamamoto Y (2014) A domain-based approach for analyzing the function of aluminum-activated malate transporters from wheat (Triticum aestivum) and Arabidopsis thaliana in Xenopus oocytes. Plant & Cell Physiology 55, 2126–2138.
A domain-based approach for analyzing the function of aluminum-activated malate transporters from wheat (Triticum aestivum) and Arabidopsis thaliana in Xenopus oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhs1SqsbzF&md5=e2251d5543e2588ee59946a91918df1bCAS |

Schmohl N, Pilling J, Fisahn J, Horst WJ (2000) Pectin methylesterase modulates aluminium sensitivity in Zea mays and Solanum tuberosum. Physiologia Plantarum 109, 419–427.
Pectin methylesterase modulates aluminium sensitivity in Zea mays and Solanum tuberosum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlsl2isr8%3D&md5=c2fa566b541a4f279baa91a218d95f85CAS |

Scott BJ (2003) Acid soil: what have we learned from research? In ‘Proceedings Joint Conference of GSV and GSNSW’. Albury, NSW. (Grassland Society of NSW) Available at: http://grasslandnsw.com.au/news/wp-content/uploads/2011/09/Scott-2003.pdf

Scott BJ, Fisher JA, Spohr LJ (1998) Manganese tolerance in a range of wheat genotypes. Communications in Soil Science and Plant Analysis 29, 219–235.
Manganese tolerance in a range of wheat genotypes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhsFKnsrg%3D&md5=d3efe6e891cf359fa247287af91796f1CAS |

Scott BJ, Ridley AM, Conyers MK (2000) Management of soil acidity in long-term pastures of south-eastern Australia: a review. Australian Journal of Experimental Agriculture 40, 1173–1198.
Management of soil acidity in long-term pastures of south-eastern Australia: a review.Crossref | GoogleScholarGoogle Scholar |

Scott BJ, Fisher JA, Cullis BR (2001) Aluminium tolerance and lime increase wheat yield on the acidic soils of central and southern New South Wales. Australian Journal of Experimental Agriculture 41, 523–532.
Aluminium tolerance and lime increase wheat yield on the acidic soils of central and southern New South Wales.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlt1ejtLs%3D&md5=6ee076198940e1bc474c373cb2ea09b0CAS |

Shea GG, Free NA, French RJ, Sweetingham MW, Hill GD (1999) The yellow lupin—a role for a new crop in the low rainfall eastern wheatbelt farming system in Western Australia. In ‘Towards the 21st Century. Proceedings 8th International Lupin Conference’. Asilomar, CA, USA. (International Lupin Association: Canterbury, New Zealand)

Singh D, Choudhary AK (2010) Inheritance pattern of aluminum tolerance in pea. Plant Breeding 129, 688–692.
Inheritance pattern of aluminum tolerance in pea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXis1Gntw%3D%3D&md5=e1e4ec947ec84ee5606bed5a491abc23CAS |

Singh D, Raje RS (2011) Genetics of aluminium tolerance in chickpea (Cicer arietinum). Plant Breeding 130, 563–568.
Genetics of aluminium tolerance in chickpea (Cicer arietinum).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVSjtbrK&md5=150d084932204d735419d2b172193ae0CAS |

Singh D, Dikshit HK, Singh R (2012) Variation of aluminium tolerance in lentil (Lens culinaris Medik.). Plant Breeding 131, 751–761.
Variation of aluminium tolerance in lentil (Lens culinaris Medik.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1Ogu7fJ&md5=bad43879a46e4bf1ed8d89f55cda0fe4CAS |

Singh D, Dikshit HK, Kumar A (2015) Aluminium tolerance in lentil (Lens culinaris Medik.) with monogenic inheritance pattern. Plant Breeding 134, 105–110.
Aluminium tolerance in lentil (Lens culinaris Medik.) with monogenic inheritance pattern.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsF2ntL4%3D&md5=bca30f180170d19b9f73ce1ad4ddf26bCAS |

Slattery B, Hollier C (2002) ‘The impact of acid soils in Victoria.’ (Agriculture Victoria: Melbourne)

Soil Quality (2016) Soil pH SA Fact sheet. Soil Quality Pty Ltd. Available at: http://soilquality.org.au/factsheets/soil-ph-south-austral

Stass A, Wang Y, Eticha D, Horst WJ (2006) Aluminium rhizotoxicity in maize grown in solutions with Al3+ or Al(OH)4 − as predominant solution Al species. Journal of Experimental Botany 57, 4033–4042.
Aluminium rhizotoxicity in maize grown in solutions with Al3+ or Al(OH)4 as predominant solution Al species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlCqsrjM&md5=e91fa56213743439513d04c88318c64fCAS |

Stass A, Kotur Z, Horst WJ (2007) Effect of boron on the expression of aluminium toxicity in Phaseolus vulgaris. Physiologia Plantarum 131, 283–290.

Stass A, Smit I, Eticha D, Oettler G, Horst WJ (2008) The significance of organic-anion exudation for the aluminum resistance of primary triticale derived from wheat and rye parents differing in aluminum resistance. Journal of Plant Nutrition and Soil Science – Zeitschrift Fur Pflanzenernahrung Und Bodenkunde 171, 634–642.
The significance of organic-anion exudation for the aluminum resistance of primary triticale derived from wheat and rye parents differing in aluminum resistance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVyku73N&md5=672adf9c166cc52dbd5a64e5991d2c31CAS |

Stoutjesdijk PA, Sale PW, Larkin PJ (2001) Possible involvement of condensed tannins in aluminium tolerance of Lotus pedunculatus. Australian Journal of Plant Physiology 28, 1063–1074.
Possible involvement of condensed tannins in aluminium tolerance of Lotus pedunculatus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xkt10%3D&md5=e49537947748ad7db6c50965f1e1defcCAS |

Sun L, Liang C, Chen Z, Liu P, Tian J, Liu G, Liao H (2014) Superior aluminium (Al) tolerance of Stylosanthes is achieved mainly by malate synthesis through an Al-enhanced malic enzyme, SgME1. New Phytologist 202, 209–219.
Superior aluminium (Al) tolerance of Stylosanthes is achieved mainly by malate synthesis through an Al-enhanced malic enzyme, SgME1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjsVeks70%3D&md5=c7ca4f23aaca92010cc8a325f57b0e87CAS |

Swan T, Kirkegaard J, Angus J, Peoples M, Conyers M, Oates A, Poile G, Moroni JS (2011) Potential impacts of subsoil constraints on canola productivity in southern NSW. In ‘Proceedings 17th Australian Research Assembly on Brassicas (ARAB)’. Wagga Wagga, NSW. (Australian Oilseeds Federation: Sydney) Available at: http://www.australianoilseeds.com/__data/assets/pdf_file/0009/8298/S6-P2-Swan.pdf

Tanaka N, Kato M, Tomioka R, Kurata R, Fukao Y, Aoyama T, Maeshima M (2014) Characteristics of a root hair-less line of Arabidopsis thaliana under physiological stresses. Journal of Experimental Botany 65, 1497–1512.
Characteristics of a root hair-less line of Arabidopsis thaliana under physiological stresses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXltFKis7o%3D&md5=5c0405e43f3269aacc257bc8143142a8CAS |

Tang Y, Sorrells ME, Kochian LV, Garvin DF (2000) Identification of RFLP markers linked to the barley aluminum tolerance gene Alp. Cell Biology & Molecular Genetics 40, 778–782.

Tang C, Diatloff E, Rengel Z, McGann B (2001) Growth response to subsurface soil acidity of wheat genotypes differing in aluminium tolerance. Plant and Soil 236, 1–10.
Growth response to subsurface soil acidity of wheat genotypes differing in aluminium tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotlajsbw%3D&md5=b74dfbfb7c49dac0bf80d25d23cec386CAS |

Tang Y, Garvin DF, Kochian LV, Sorrells ME, Carver BF (2002) Physiological genetics of aluminum tolerance in the wheat cultivar Atlas 66. Crop Science 42, 1541–1546.
Physiological genetics of aluminum tolerance in the wheat cultivar Atlas 66.Crossref | GoogleScholarGoogle Scholar |

Taylor GJ (1991) Current views of the aluminum stress response; the physiological basis of tolerance. Current Topics in Plant Biochemistry and Physiology 10, 57–93.

Tokizawa M, Kobayashi Y, Saito T, Kobayashi M, Iuchi S, Nomoto M, Tada Y, Yamamoto YY, Koyama H (2015) SENSITIVE TO PROTON RHIZOTOXICITY1, CALMODULIN BINDING TRANSCRIPTION ACTIVATOR2, and other transcription factors are involved in ALUMINUM-ACTIVATED MALATE TRANSPORTER1 expression. Plant Physiology 167, 991–1003.
SENSITIVE TO PROTON RHIZOTOXICITY1, CALMODULIN BINDING TRANSCRIPTION ACTIVATOR2, and other transcription factors are involved in ALUMINUM-ACTIVATED MALATE TRANSPORTER1 expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXkt1aqsL0%3D&md5=43c7a834776498c25fa3a82c02cac14eCAS |

Tolrà R, Barceló J, Poschenrieder C (2009) Constitutive and aluminium-induced patterns of phenolic compounds in two maize varieties differing in aluminium tolerance. Journal of Inorganic Biochemistry 103, 1486–1490.
Constitutive and aluminium-induced patterns of phenolic compounds in two maize varieties differing in aluminium tolerance.Crossref | GoogleScholarGoogle Scholar |

Tolrà R, Vogel-Mikus K, Hajiboland R, Kump P, Pongrac P, Kaulich B, Gianoncelli A, Babin V, Barcelo J, Regvar M, Poschenrieder C (2011) Localization of aluminium in tea (Camellia sinensis) leaves using low energy X-ray fluorescence spectro-microscopy. Journal of Plant Research 124, 165–172.
Localization of aluminium in tea (Camellia sinensis) leaves using low energy X-ray fluorescence spectro-microscopy.Crossref | GoogleScholarGoogle Scholar |

Tovkach A, Ryan PR, Richardson AE, Lewis DC, Rathjen TM, Ramesh S, Tyerman SD, Delhaize E (2013) Transposon-mediated alteration of TaMATE1B expression in wheat confers constitutive citrate efflux from root apices. Plant Physiology 161, 880–892.
Transposon-mediated alteration of TaMATE1B expression in wheat confers constitutive citrate efflux from root apices.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmvFKqsL0%3D&md5=6de06d60c0a6868aae91e0452f92a39aCAS |

Villagarcia MR, Carter TE, Rufty TW, Niewoehner AS, Jennette MW, Arrellano C (2001) Genotypic rankings for aluminum tolerance of soybean roots grown in hydroponics and sand culture. Crop Science 41, 1499–1507.
Genotypic rankings for aluminum tolerance of soybean roots grown in hydroponics and sand culture.Crossref | GoogleScholarGoogle Scholar |

von Uexküll HR, Mutert E (1995) Global extent, development and economic impact of acid soils. Plant and Soil 171, 1–15.
Global extent, development and economic impact of acid soils.Crossref | GoogleScholarGoogle Scholar |

Walker J, Hertel K, Parker P, Edwards J (2011) ‘Lupin growth and development.’ Procrop Series. (NSW Department of Industry and Investment: Sydney)

Wang JP, Raman H, Zhou MX, Ryan PR, Delhaize E, Hebb DM, Coombes N, Mendham N (2007) High-resolution mapping of the Alp locus and identification of a candidate gene HvMATE controlling aluminium tolerance in barley (Hordeum vulgare L.). Theoretical and Applied Genetics 115, 265–276.
High-resolution mapping of the Alp locus and identification of a candidate gene HvMATE controlling aluminium tolerance in barley (Hordeum vulgare L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvFamu7s%3D&md5=4b31fec04906f1692ff81ab329cb01b0CAS |

Weir RG (1988) The occurrence and diagnosis of manganese toxicities and deficiencies in crops and pastures in New South Wales Australia. In ‘Manganese in soils and plants’. (Ed. RD Graham) pp. 99–100. (Kluwer Academic Publishers: Dordrecht, The Netherlands)

Williams CH (1980) Soil acidification under clover pasture. Australian Journal of Experimental Agriculture and Animal Husbandry 20, 301–310.

Williams CH, Andrew CS (1970) Mineral nutrition of pastures. In ‘Australian grasslands’. (Ed. RM Moore) pp. 303–320. (ANU Press: Canberra, ACT)

Wolfe E (2009) Country pasture/forage resource profiles: Australia. Food and Agriculture Organization of the United Nations, Rome. Available at: https://pastagem.org/index.php/en-us/tools/documents/download/19-reports/484-country-pasture-forage-resource-profile (accessed 4 July 2016).

Yamaji N, Huang CF, Nagao S, Yano M, Sato Y, Nagamura Y, Ma JF (2009) A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice. The Plant Cell 21, 3339–3349.
A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFOgsLnP&md5=69a6db813d045d259e0af651796e17c8CAS |

Yang ZM, Sivaguru M, Horst WJ, Matsumoto H (2000) Aluminium tolerance is achieved by exudation of citric acid from roots of soybean (Glycine max). Physiologia Plantarum 110, 72–77.
Aluminium tolerance is achieved by exudation of citric acid from roots of soybean (Glycine max).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXms1Cqu70%3D&md5=c01e212474ef39f9b02852908b57747bCAS |

Yang JL, Zhang L, Li YY, You JF, Wu P, Zheng SJ (2006) Citrate transporters play a critical role in aluminium-stimulated citrate efflux in rice bean (Vigna umbellata) roots. Annals of Botany 97, 579–584.
Citrate transporters play a critical role in aluminium-stimulated citrate efflux in rice bean (Vigna umbellata) roots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xkt1OisLw%3D&md5=a3a513ba7a16dbd6cca1662a053a2b95CAS |

Yang JL, Li YY, Zhang YJ, Zhang SS, Wu YR, Wu P, Zheng SJ (2008) Cell wall polysaccharides are specifically involved in the exclusion of aluminum from the rice root apex. Plant Physiology 146, 602–611.
Cell wall polysaccharides are specifically involved in the exclusion of aluminum from the rice root apex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtFCmtLw%3D&md5=f8fdeb4bc638055ed18f4c48318a877aCAS |

Zhang WH, Ryan PR, Sasaki T, Yamamoto Y, Sullivan W, Tyerman SD (2008) Characterization of the TaALMT1 protein as an Al3+-activated anion channel in transformed tobacco (Nicotiana tabacum L.) cells. Plant & Cell Physiology 49, 1316–1330.
Characterization of the TaALMT1 protein as an Al3+-activated anion channel in transformed tobacco (Nicotiana tabacum L.) cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1ygt73M&md5=57e1fae6b7646e8d0e60bf647700e2f2CAS |

Zhang L, Gu JP, Wei SQ, Zhou ZY, Zhang C, Yu YX (2011) Mechanism of acid tolerance in a rhizobium strain isolated from Pueraria lobata (Willd.) Ohwi. Canadian Journal of Microbiology 57, 514–524.
Mechanism of acid tolerance in a rhizobium strain isolated from Pueraria lobata (Willd.) Ohwi.Crossref | GoogleScholarGoogle Scholar |

Zhang H, Shi WL, You JF, Bian MD, Qin XM, Yu H, Liu Q, Ryan PR, Yang ZM (2015) Transgenic Arabidopsis thaliana plants expressing a β-1,3-glucanase from sweet sorghum (Sorghum bicolor L.) show reduced callose deposition and increased tolerance to aluminium toxicity. Plant, Cell & Environment 38, 1178–1188.
Transgenic Arabidopsis thaliana plants expressing a β-1,3-glucanase from sweet sorghum (Sorghum bicolor L.) show reduced callose deposition and increased tolerance to aluminium toxicity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXotVSmtr0%3D&md5=cee989cb8b57aa48699c57b98013594bCAS |

Zhou LL, Bai GH, Ma HX, Carver BF (2007) Quantitative trait loci for aluminum resistance in wheat. Molecular Breeding 19, 153–161.
Quantitative trait loci for aluminum resistance in wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht12lug%3D%3D&md5=9d7bbf04fe953bf08662904affc90d82CAS |

Zhu XF, Sun Y, Zhang BC, Mansoori N, Wan JX, Liu Y, Wang ZW, Shi YZ, Zhou YH, Zheng SJ (2014a) TRICHOME BIREFRINGENCE-LIKE27 affects aluminum sensitivity by modulating the O-acetylation of xyloglucan and aluminum-binding capacity in Arabidopsis. Plant Physiology 166, 181–189.
TRICHOME BIREFRINGENCE-LIKE27 affects aluminum sensitivity by modulating the O-acetylation of xyloglucan and aluminum-binding capacity in Arabidopsis.Crossref | GoogleScholarGoogle Scholar |

Zhu XF, Wan JX, Sun Y, Shi YZ, Braam J, Li GX, Zheng SJ (2014b) Xyloglucan endotransglucosylase-hydrolase17 interacts with xyloglucan endotransglucosylase-hydrolase31 to confer xyloglucan endotransglucosylase action and affect aluminum sensitivity in Arabidopsis. Plant Physiology 165, 1566–1574.
Xyloglucan endotransglucosylase-hydrolase17 interacts with xyloglucan endotransglucosylase-hydrolase31 to confer xyloglucan endotransglucosylase action and affect aluminum sensitivity in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlKntbjL&md5=eb984cd8099088218ef4228fdfec928bCAS |