Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

Grain mineral density of bread and durum wheat landraces from geochemically diverse native soils

José Francisco Vázquez A , Efraín Antonio Chacón A , José María Carrillo A and Elena Benavente A B
+ Author Affiliations
- Author Affiliations

A Department of Biotechnology and Plant Biology, School of Agricultural, Food and Biosystems Engineering, UPM – Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040-Madrid, Spain.

B Corresponding author. Email: e.benavente@upm.es

Crop and Pasture Science 69(4) 335-346 https://doi.org/10.1071/CP17306
Submitted: 24 August 2017  Accepted: 22 December 2017   Published: 16 March 2018

Abstract

Future progress on the creation of wheat cultivars with high grain zinc (Zn) and iron (Fe) mineral density will depend on both the availability of suitable donor germplasm and the identification of genes or quantitative trait loci contributing to increase the accumulation of mineral elements in the wheat kernels. Multi-environment field trials were conducted to evaluate the grain Zn, Fe and protein concentration of 32 bread wheat (Triticum aestivum L.) and 20 durum wheat (T. turgidum L. var. durum) landraces locally adapted to soils covering a wide range of pH values and mineral composition. These landraces were selected after a preliminary, small-scale field trial that had analysed 425 Spanish local varieties. Analyses of variance demonstrated a significant effect of genotype on grain composition, and 16 wheat landraces with elevated grain Zn and/or Fe density across the environments were identified. These landraces rich in grain minerals represent valuable primary gene-pool parents for wheat biofortification. No pattern of native soil geochemical characteristics that could help to predict the success in collecting mineral-dense genotypes in a given area was found. Mapping populations derived from some pairs of grain-mineral-rich and -poor genotypes characterised in the study may facilitate the development of molecular markers to assist the selection of superior wheat genotypes.

Additional keywords: grain minerals, local germplasm, QTL-mapping, Zn-deficient soils.


References

Alloway BJ (2009) Soil factors associated with zinc deficiency in crops and humans. Environmental Geochemistry and Health 31, 537–548.
Soil factors associated with zinc deficiency in crops and humans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVWrs77J&md5=ef6e0e1cb3dedf19c5c7d507f3449d43CAS |

Alvarez JM (2010) Influence of soil type and natural Zn chelates on flax response, tensile properties and soil Zn availability. Plant and Soil 328, 217–233.
Influence of soil type and natural Zn chelates on flax response, tensile properties and soil Zn availability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXit1Wrt78%3D&md5=5ea6a75aff49205a98e8d88f1160571aCAS |

Amiri R, Bahraminejad S, Sasani S, Jalali-Honarmand S, Fakhri R (2015) Bread wheat genetic variation for grain’s protein, iron and zinc concentrations as uptake by their genetic ability. European Journal of Agronomy 67, 20–26.
Bread wheat genetic variation for grain’s protein, iron and zinc concentrations as uptake by their genetic ability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXlsVOksbs%3D&md5=4507822ae7904bbbbfbd249362db0515CAS |

Cakmak I (2008) Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant and Soil 302, 1–17.
Enrichment of cereal grains with zinc: Agronomic or genetic biofortification?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltVKn&md5=aec8796209a157790499481229d23c87CAS |

Cakmak I, Ozkan H, Braun H, Welch R, Romheld V (2000) Zinc and iron concentrations in seeds of wild, primitive, and modern wheats. Food and Nutrition Bulletin 21, 401–403.
Zinc and iron concentrations in seeds of wild, primitive, and modern wheats.Crossref | GoogleScholarGoogle Scholar |

Cakmak I, Pfeiffer WH, McClafferty B (2010) Biofortification of durum wheat with zinc and iron. Cereal Chemistry 87, 10–20.
Biofortification of durum wheat with zinc and iron.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Cit70%3D&md5=2f5c94a205105769c155c8eedce14640CAS |

Chatzav M, Peleg Z, Ozturk L, Yazici A, Fahima T, Cakmak I, Saranga Y (2010) Genetic diversity for grain nutrients in wild emmer wheat: potential for wheat improvement. Annals of Botany 105, 1211–1220.
Genetic diversity for grain nutrients in wild emmer wheat: potential for wheat improvement.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnvVOqt7s%3D&md5=8637f45122a31a521d18b2a8875f7b16CAS |

Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2016) InfoStat v2016. InfoStat, Universidad Nacional de Córdoba. Available at: http://www.infostat.com.ar/

Dwivedi SL, Sahrawat KL, Rai KN, Blair MW, Andersson MS, Pfeiffer W (2012) Nutritionally enhanced staple food crops. Plant Breeding Reviews 36, 169–291.

Fan M-S, Zhao F-J, Fairweather-Tait SJ, Poulton PR, Dunham SJ, McGrath SP (2008) Evidence of decreasing mineral density in wheat grain over the last 160 years. Journal of Trace Elements in Medicine and Biology 22, 315–324.
Evidence of decreasing mineral density in wheat grain over the last 160 years.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFSntLY%3D&md5=50ca53dce0948d09a123a76821ae774aCAS |

FAO/WHO (2014) Rome Declaration of Nutrition. In ‘Proceedings Second International Conference of Nutrition’. 19–21 November 2014, Rome. (Food and Agriculture Organization of the United Nations: Rome) Available at: http://www.fao.org/3/a-ml542e.pdf (accessed 8 January 2016)

Genc Y, Verbyla AP, Torun AA, Cakmak I, Willsmore K, Wallwork H, McDonald GK (2009) Quantitative trait loci analysis of zinc efficiency and grain zinc concentration in wheat using whole genome average interval mapping. Plant and Soil 314, 49–66.
Quantitative trait loci analysis of zinc efficiency and grain zinc concentration in wheat using whole genome average interval mapping.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVOgsLrP&md5=66242c7c0f8a3067ab2838ddc018a563CAS |

Gomez-Becerra HF, Erdem H, Yazici A, Tutus Y, Torun B, Ozturk L, Cakmak I (2010) Grain concentrations of protein and mineral nutrients in a large collection of spelt wheat grown under different environments. Journal of Cereal Science 52, 342–349.
Grain concentrations of protein and mineral nutrients in a large collection of spelt wheat grown under different environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsV2gt77I&md5=5bccb5afd2aa897a88245d264a5f0807CAS |

Gomez-Coronado F, Poblaciones MJ, Almeida AS, Cakmak I (2016) Zinc (Zn) concentration of bread wheat grown under Mediterranean conditions as affected by genotype and soil/foliar Zn application. Plant and Soil 401, 331–346.
Zinc (Zn) concentration of bread wheat grown under Mediterranean conditions as affected by genotype and soil/foliar Zn application.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvFCltLvE&md5=07507c66cde42d7fc542a9a93462dc20CAS |

Gooding MJ, Fan M, McGrath SP, Shewry PR, Zhao F-J (2012) Contrasting effects of dwarfing alleles and nitrogen availability on mineral concentrations in wheat grain. Plant and Soil 360, 93–107.
Contrasting effects of dwarfing alleles and nitrogen availability on mineral concentrations in wheat grain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFWisb7M&md5=a7695459b80dd9332d102d26bc96ac05CAS |

Graham R, Senadhira D, Beebe S, Iglesias C, Monasterio I (1999) Breeding for micronutrient density in edible portions of staple food crops: conventional approaches. Field Crops Research 60, 57–80.
Breeding for micronutrient density in edible portions of staple food crops: conventional approaches.Crossref | GoogleScholarGoogle Scholar |

Gupta N, Ram H, Kumar B (2016) Mechanism of Zinc absorption in plants: uptake, transport, translocation and accumulation. Reviews in Environmental Science and Biotechnology 15, 89–109.

Guzmán C, Enrique Autrique J, Mondal S, Prakash Singh R, Govindan V, Morales-Dorantes A, Posadas-Romano G, Crossa J, Ammar K, Javier Pena R (2016) Response to drought and heat stress on wheat quality, with special emphasis on bread-making quality, in durum wheat. Field Crops Research 186, 157–165.
Response to drought and heat stress on wheat quality, with special emphasis on bread-making quality, in durum wheat.Crossref | GoogleScholarGoogle Scholar |

Joshi AK, Crossa J, Arun B, Chand R, Trethowan R, Vargas M, Ortiz-Monasterio I (2010) Genotype × environment interaction for zinc and iron concentration of wheat grain in eastern Gangetic plains of India. Field Crops Research 116, 268–277.
Genotype × environment interaction for zinc and iron concentration of wheat grain in eastern Gangetic plains of India.Crossref | GoogleScholarGoogle Scholar |

Locutura J, Bel-Lan A, García Cortés A, Martínez S (2012) ‘Atlas geoquímico de España.’ (Instituto Geológico y Minero de España: Madrid)

Monasterio I, Graham RD (2000) Breeding for trace minerals in wheat. Food and Nutrition Bulletin 21, 392–396.
Breeding for trace minerals in wheat.Crossref | GoogleScholarGoogle Scholar |

Morgounov A, Gomez-Becerra HF, Abugalieva A, Dzhunusova M, Yessimbekova M, Muminjanov H, Zelenskiy Y, Ozturk L, Cakmak I (2007) Iron and zinc grain density in common wheat grown in Central Asia. Euphytica 155, 193–203.
Iron and zinc grain density in common wheat grown in Central Asia.Crossref | GoogleScholarGoogle Scholar |

Neelam K, Rawat N, Tiwari VK, Kumar S, Chhuneja P, Singh K, Randhawa GS, Dhaliwal HS (2011) Introgression of group 4 and 7 chromosomes of Ae. peregrina in wheat enhances grain iron and zinc density. Molecular Breeding 28, 623–634.
Introgression of group 4 and 7 chromosomes of Ae. peregrina in wheat enhances grain iron and zinc density.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFSjurrK&md5=c919546b5aced05af9d32efc4c764698CAS |

Nikolic M, Nikolic N, Kostic L, Pavlovic J, Bosnic P, Stevic N, Savic J, Hristov N (2016) The assessment of soil availability and wheat grain status of zinc and iron in Serbia: Implications for human nutrition. The Science of the Total Environment 553, 141–148.
The assessment of soil availability and wheat grain status of zinc and iron in Serbia: Implications for human nutrition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XksVWnsr8%3D&md5=e2df6f2d904cb0c84acca393137936e8CAS |

Oury FX, Leenhardt F, Remesy C, Chanliaud E, Duperrier B, Balfourier F, Charmet G (2006) Genetic variability and stability of grain magnesium, zinc and iron concentrations in bread wheat. European Journal of Agronomy 25, 177–185.
Genetic variability and stability of grain magnesium, zinc and iron concentrations in bread wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xns1Kjsbw%3D&md5=a0b827d04ac27f54e94220ede8b6916eCAS |

Peleg Z, Cakmak I, Ozturk L, Yazici A, Jun Y, Budak H, Korol AB, Fahima T, Saranga Y (2009) Quantitative trait loci conferring grain mineral nutrient concentrations in durum wheat × wild emmer wheat RIL population. Theoretical and Applied Genetics 119, 353–369.
Quantitative trait loci conferring grain mineral nutrient concentrations in durum wheat × wild emmer wheat RIL population.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotFWhtLc%3D&md5=ecc1ed1b063aaf2ff6ac5677e485c9b0CAS |

Rawat N, Tiwari VK, Singh N, Randhawa GS, Singh K, Chhuneja P, Dhaliwal HS (2009) Evaluation and utilization of Aegilops and wild Triticum species for enhancing iron and zinc content in wheat. Genetic Resources and Crop Evolution 56, 53–64.
Evaluation and utilization of Aegilops and wild Triticum species for enhancing iron and zinc content in wheat.Crossref | GoogleScholarGoogle Scholar |

Rawat N, Neelam K, Tiwari VK, Randhawa GS, Friebe B, Gill BS, Dhaliwal HS (2011) Development and molecular characterization of wheat—Aegilops kotschyi addition and substitution lines with high grain protein, iron, and zinc. Genome 54, 943–953.
Development and molecular characterization of wheat—Aegilops kotschyi addition and substitution lines with high grain protein, iron, and zinc.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1SntrbI&md5=6d0e5dd91d0317c09ae08d5e3975a834CAS |

Rawat N, Neelam K, Tiwari VK, Dhaliwal HS (2013) Biofortification of cereals to overcome hidden hunger. Plant Breeding 132, 437–445.

Rodríguez-Martín JA, López-Arias M, Grau-Corbí JM (2009) ‘Metales pesados, materia orgánica y otros parámetros de los suelos agrícolas y pastos de España.’ (Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria. Ministerio de Medio Ambiente y Medio Rural y Marino of Spain: Madrid)

Salminen R, Batista M, Bidovec M, Demetriades A, De Vivo B, De Vos W, Duris M, Gilucis A, Gregorauskiene V, Halamić J (2005) Geochemical atlas of Europe. Part 1. Background information, methodology and maps. FOREGS—EuroGeoSurveys, Brussels. Available at: http://weppi.gtk.fi/publ/foregsatlas/index.php

Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314, 1298–1301.

Velu G, Singh R, Huerta-Espino J, Pena J, Ortiz-Monasterio I (2011) Breeding for enhanced zinc and iron concentration in CIMMYT spring wheat germplasm. Czech Journal of Genetics and Plant Breeding 47, S174–S177.

Velu G, Singh RP, Huerta-Espino J, Pena RJ, Arun B, Mahendru-Singh A, Mujahid MY, Sohu VS, Mavi GS, Crossa J, Alvarado G, Joshi AK, Pfeiffer WH (2012) Performance of biofortified spring wheat genotypes in target environments for grain zinc and iron concentrations. Field Crops Research 137, 261–267.
Performance of biofortified spring wheat genotypes in target environments for grain zinc and iron concentrations.Crossref | GoogleScholarGoogle Scholar |

Velu G, Guzman C, Mondal S, Autrique JE, Huerta J, Singh RP (2016) Effect of drought and elevated temperature on grain zinc and iron concentrations in CIMMYT spring wheat. Journal of Cereal Science 69, 182–186.
Effect of drought and elevated temperature on grain zinc and iron concentrations in CIMMYT spring wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XltFGltL4%3D&md5=3204c5a10fae985389e4de2ac54243bfCAS |

Waters BM, Sankaran RP (2011) Moving micronutrients from the soil to the seeds: Genes and physiological processes from a biofortification perspective. Plant Science 180, 562–574.
Moving micronutrients from the soil to the seeds: Genes and physiological processes from a biofortification perspective.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisFyhs70%3D&md5=b144703047240b32e6e6550711195cd9CAS |

White PJ, Broadley MR (2005) Biofortifying crops with essential mineral elements. Trends in Plant Science 10, 586–593.
Biofortifying crops with essential mineral elements.Crossref | GoogleScholarGoogle Scholar |

Xue Y-F, Zhang W, Liu D-Y, Yue S-C, Cui Z-L, Chen X-P, Zou C-Q (2014) Effects of nitrogen management on root morphology and zinc translocation from root to shoot of winter wheat in the field. Field Crops Research 161, 38–45.
Effects of nitrogen management on root morphology and zinc translocation from root to shoot of winter wheat in the field.Crossref | GoogleScholarGoogle Scholar |

Zhao FJ, Su YH, Dunham SJ, Rakszegi M, Bedo Z, McGrath SP, Shewry PR (2009) Variation in mineral micronutrient concentrations in grain of wheat lines of diverse origin. Journal of Cereal Science 49, 290–295.
Variation in mineral micronutrient concentrations in grain of wheat lines of diverse origin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXivVWlu7g%3D&md5=610176650ce8cc91e58d4f27403f7542CAS |

Zhao H, Guo B, Wei Y, Zhang B (2012) Effects of wheat origin, genotype, and their interaction on multielement fingerprints for geographical traceability. Journal of Agricultural and Food Chemistry 60, 10957–10962.
Effects of wheat origin, genotype, and their interaction on multielement fingerprints for geographical traceability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVyqtr%2FP&md5=7ebb424df8c70a922f6023297a5b0617CAS |