Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

Effect of watertable depth and salinity on growth dynamics of Rhodes grass (Chloris gayana)

Sebastián Chiacchiera A D , Nicolás Bertram A , Edith Taleisnik B and Esteban Jobbágy C
+ Author Affiliations
- Author Affiliations

A EEA INTA Marcos Juárez, Ruta Provincial No. 12, Km 36, CC 21 (CP 2580), Marcos Juárez, Córdoba, Argentina.

B CONICET, IFRGV-CIAP INTA, Camino a 60 cuadras Km 5.5 (CP 5000), Córdoba, Argentina.

C Grupo de Estudios Ambientales, IMASL-CONICET, Ejercito de los Andes 950 (5700), San Luis, Argentina.

D Corresponding author. Email: chiacchiera.sebastian@inta.gob.ar

Crop and Pasture Science 67(8) 881-887 https://doi.org/10.1071/CP15241
Submitted: 7 February 2015  Accepted: 29 March 2016   Published: 17 August 2016

Abstract

Depending on their depth, watertables can have a positive effect on plants by supplying water, a negative effect by creating waterlogged and/or saline conditions or a neutral effect. Rhodes grass (Chloris gayana), a tropical perennial forage adapted to saline soils, floods and droughts, is a viable choice for the lowlands in the Pampas region of Argentina. The effects of the depth and salt concentration of the watertable on the growth dynamics and biomass accumulation of Rhodes grass were quantified in a greenhouse experiment. The experiment consisted of 10 treatments, resulting from the factorial combination of five watertable depths (25, 75, 125, 175 and 225 cm) and two salt treatments (EC 1.4 and 20.5 dS m–1). The presence of non-saline watertable at a depth of 25 cm produced a 5-fold greater biomass and showed an increase in water consumption of equal magnitude compared with deeper watertables. The increase in shoot biomass was explained primarily by higher tiller and stolon density, which increased 3.3- and 7.7-fold respectively, at watertables that were 25 cm deep compared with deeper treatments. Furthermore, groundwater use efficiency was 30% higher in non-saline watertables at 25 cm depth. Similarly, at this depth, the leaf blades were 50% longer compared with the deepest watertables evaluated. In contrast, the presence of saline watertables at 25 cm depth had a detrimental effect on the production of biomass and its components, whereas the effect at 125 cm and greater depths was neutral. Therefore, Rhodes grass is a species that can take advantage of the widespread shallow watertable environments of the Pampas region as long as the salinity levels are low.

Additional keywords: accumulated biomass, water stress, water use efficiency.


References

Assuero SG, Matthew C, Kemp PD (2000) Morphological and physiological effects of water deficit and endophyte infection on contrasting tall fescue cultivars. New Zealand Journal of Agricultural Research 43, 49–61.
Morphological and physiological effects of water deficit and endophyte infection on contrasting tall fescue cultivars.Crossref | GoogleScholarGoogle Scholar |

Beale CV, Morison JIL, Long SP (1999) Water use efficiency of C4 perennial grasses in a temperate climate. Agricultural and Forest Meteorology 96, 103–115.
Water use efficiency of C4 perennial grasses in a temperate climate.Crossref | GoogleScholarGoogle Scholar |

Bertram NA, Chiacchiera S, Elorriaga S, Sampaoli F, Salgado V, Kloster AM (2010) Estrategias de fertilización nitrogenada en grama Rhodes (Chloris gayana) en suelos halo-hidromorficos y ambiente templado. Revista Argentina de Producción Animal 30, 370–371.

Bogdan A (1969) Rhodes grass. Herbage Abstracts 39, 1–13.

Canadell J, Jackson RB, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996) Maximum rooting depth of vegetation types at the global scale. Oecologia 108, 583–595.
Maximum rooting depth of vegetation types at the global scale.Crossref | GoogleScholarGoogle Scholar |

Castillo EG, Tuong TP, Ismail AM, Inubushi K (2007) Response to salinity in rice: comparative effects of osmotic and ionic stresses. Plant Production Science 10, 159–170.
Response to salinity in rice: comparative effects of osmotic and ionic stresses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlt1GhsLc%3D&md5=1cb004316c423e433b459badcc05c860CAS |

Chaturvedi GS, Aggarwal PK, Singh AK, Joshi MG, Sinha SK (1981) Effect of irrigation on tillering in wheat, triticale and barley in a water-limited environment. Irrigation Science 2, 225–235.
Effect of irrigation on tillering in wheat, triticale and barley in a water-limited environment.Crossref | GoogleScholarGoogle Scholar |

Cisneros JM, Cantero JJ, Cantero AG (1999) Vegetation, soil hydrophysical properties, and grazing relationships in saline-sodic soils of Argentina. Canadian Journal of Soil Science 79, 399–409.
Vegetation, soil hydrophysical properties, and grazing relationships in saline-sodic soils of Argentina.Crossref | GoogleScholarGoogle Scholar |

Cisneros JM, Degioanni A, Cantero A, Cantero JJ (2008) Caracterización y manejo de suelos salinos en el Área Pampeana Central. In ‘La salinización de suelos en la Argentina: su impacto en la producción agropecuaria’. (Eds E Taleisnik, K Grunberg, G Santa Maria) pp. 17–46. (Editorial Universidad Católica de Córdoba: Córdoba, Argentina)

Craine JM, Wedin DA, Chapin FS, Reich PB (2002) Relationship between the structure of root systems and resource use for 11 North American grassland plants. Plant Ecology 165, 85–100.
Relationship between the structure of root systems and resource use for 11 North American grassland plants.Crossref | GoogleScholarGoogle Scholar |

Durand JL, Gonzalez-Dugo V, Gastal F (2010) How much do water deficits alter the nitrogen nutrition status of forage crops? Nutrient Cycling in Agroecosystems 88, 231–243.
How much do water deficits alter the nitrogen nutrition status of forage crops?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlSjt7%2FN&md5=54fa70df935696885b76105d0d87d827CAS |

FAO (2011) Grassland species profiles. Chloris gayana Kunth. Available at: www.fao.org/ag/AGP/AGPC/doc/GBASE/data/Pf000199.HTM (accessed December 2011).

Gonzalez-Dugo V, Durand JL, Gastal F, Picon-Cochard C (2005) Short-term response of the nitrogen nutrition status of tall fescue and Italian ryegrass swards under water deficit. Australian Journal of Agricultural Research 56, 1269–1276.
Short-term response of the nitrogen nutrition status of tall fescue and Italian ryegrass swards under water deficit.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Glt7rP&md5=614d7f3b809c6b3d1a626e34a2de719eCAS |

Gorgas J, Bustos M (2008) Dinámica y evaluación de los suelos de Córdoba con problemas de drenaje, salinidad y alcalinidad. In ‘La salinización de suelos en la Argentina: su impacto en la producción agropecuaria’. (Eds E Taleisnik, K Grunberg, G Santa María) pp. 47–62. (Editorial Universidad Católica de Córdoba: Córdoba, Argentina)

Imaz JA, Giménez DO, Grimoldi AA, Striker GG (2012) The effects of submergence on anatomical, morphological and biomass allocation responses of tropical grasses Chloris gayana and Panicum coloratum at seedling stage. Crop & Pasture Science 63, 1145–1155.
The effects of submergence on anatomical, morphological and biomass allocation responses of tropical grasses Chloris gayana and Panicum coloratum at seedling stage.Crossref | GoogleScholarGoogle Scholar |

Jobbágy EG, Jackson RB (2004) Groundwater use and salinization with grassland afforestation. Global Change Biology 10, 1299–1312.
Groundwater use and salinization with grassland afforestation.Crossref | GoogleScholarGoogle Scholar |

Jobbágy EG, Nosetto MD, Santoni C, Baldi G (2008) El desafío eco-hidrológico de las transiciones entre sistemas leñosos y herbáceos en la Llanura Chaco-pampeana. Ecología Austral 18, 305–322.

Lavado RS, Taboada MA (2009) Los procesos de salinización globales y específicos de la pampa húmeda. In ‘En Resúmenes Primer Congreso de la Red Argentina de salinidad’. Córdoba, Argentina. p. 11.

Mueller L, Behrendt A, Schalitz G, Schindler U (2005) Above ground biomass and water use efficiency of crops at shallow water tables in a temperate climate. Agricultural Water Management 75, 117–136.
Above ground biomass and water use efficiency of crops at shallow water tables in a temperate climate.Crossref | GoogleScholarGoogle Scholar |

Munns R (2002) Comparative physiology of salt and water stress. Plant, Cell & Environment 25, 239–250.
Comparative physiology of salt and water stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xhslakurw%3D&md5=825b7ff88609ac66c441fe3d3e49ac50CAS |

Narain P, Singh NK, Sindhwal NS, Joshie P (1998) Water balance and water use efficiency of different land uses in western Himalayan valley region. Agricultural Water Management 37, 225–240.
Water balance and water use efficiency of different land uses in western Himalayan valley region.Crossref | GoogleScholarGoogle Scholar |

Nosetto MD, Jobbágy EG, Jackson RB, Sznaider GA (2009) Reciprocal influence of crops and shallow ground water in sandy landscapes of the Inland Pampas. Field Crops Research 113, 138–148.
Reciprocal influence of crops and shallow ground water in sandy landscapes of the Inland Pampas.Crossref | GoogleScholarGoogle Scholar |

Pagès L, Pellerin S (1994) Evaluation of parameters describing the root system architecture of field grown maize plants (Zea mays L.). Plant and Soil 164, 169–176.
Evaluation of parameters describing the root system architecture of field grown maize plants (Zea mays L.).Crossref | GoogleScholarGoogle Scholar |

Palta JA, Watt M (2009) Crop roots systems form and function: improving the capture of water and nutrients with vigorous root systems. In ‘Crop physiology: applications for genetic improvement and agronomy’. (Eds V Sadras, D Calderini) pp. 309–325. (Academic Press: San Diego, CA)

Passioura JB, Munns R (2000) Rapid environmental changes that affect leaf water status induce transient surges or pauses in leaf expansion rate. Australian Journal of Plant Physiology 27, 941–948.

Pérez H, Bravo S, Ongaro V, Castagnaro A, García Seffino L, Taleisnik E (1999) Chloris gayana cultivars: RAPD polymorphism and field performance under salinity. Grass and Forage Science 54, 289–296.
Chloris gayana cultivars: RAPD polymorphism and field performance under salinity.Crossref | GoogleScholarGoogle Scholar |

Priano LJ, Pilatti MA (1989) Tolerancia a la salinidad de forrajeras cultivadas. Ciencia del Suelo. 7, 113–116.

Scanlon BR, Reedy RC, Stonestrom DA, Prudic DE, Dennehy KF (2005) Impact of land use and land cover change on groundwater recharge and quality in the southwestern US. Global Change Biology 11, 1577–1593.
Impact of land use and land cover change on groundwater recharge and quality in the southwestern US.Crossref | GoogleScholarGoogle Scholar |

Taboada MA, Rubio G, Lavado R (1998) The deterioration of tall wheatgrass pastures on saline sodic soils. Range Management 51, 241–246.
The deterioration of tall wheatgrass pastures on saline sodic soils.Crossref | GoogleScholarGoogle Scholar |

Taleisnik E, Peyrano G, Arias C (1997) Response of Chloris gayana cultivars to salinity. Tropical Grasslands 31, 232–240.

Vignolio OR, Maceira NO, Fernández ON (1994) Efectos del anegamiento en invierno y verano sobre el crecimiento y la supervivencia de Lotus tenuis y Lotus corniculatus. Ecología Austral 4, 19–28.

Zeng L, Shannon MC, Lesch SM (2001) Timing of salinity stress affects rice growth and yield components. Agricultural Water Management 48, 191–206.
Timing of salinity stress affects rice growth and yield components.Crossref | GoogleScholarGoogle Scholar |