Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

Evaluation of the biochemical and physiological activity of the natural compound, 2,4-ditert-butylphenol on weeds

T. S. Chuah A D , M. Z. Norhafizah B and B. S. Ismail C
+ Author Affiliations
- Author Affiliations

A School of Food Science and Technology, University of Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia.

B Faculty of Agro-Based Industry, University of Malaysia Kelantan, 17600 Jeli, Kelantan, Malaysia.

C School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, National University of Malaysia, 43600 Bangi, Selangor, Malaysia.

D Corresponding author. Email: chuahts@umt.edu.my

Crop and Pasture Science 66(2) 214-223 https://doi.org/10.1071/CP13386
Submitted: 12 November 2013  Accepted: 4 October 2014   Published: 27 January 2015

Abstract

2,4-Di-tert-butylphenol (2,4-DTBP) is a natural compounds present in medicinal plants. It is reported to have herbicidal properties. However, the mechanism of action is unknown for use in weed management. Measurements were made of lipid peroxidation, ion leakage, antioxidant enzymes, chlorophyll content, chlorophyll fluorescence and photosynthesis in the grassy weed Leptochloa chinensis (L.) Nees and the broadleaf weed Hedyotis verticillata (L.) Lam. at 7 and 14 days, respectively, after treatment with 2,4-DTBP. The 2,4-DTBP reduced the shoot fresh weight of L. chinensis and H. verticillata by 50% when applied at concentrations of 50 and 200 µg mL–1, respectively. Treatment with 2,4-DTBP significantly increased levels of malondialdehyde, caused excessive ion leakage and increased activities of antioxidant enzymes such as superoxide dismutase, peroxidase and catalase in leaf and root tissues of the two bioassay species. Most notably, 2,4-DTBP treatment caused great reduction in chlorophyll content, thereby decreasing chlorophyll fluorescence, transpiration and net photosynthetic rate in the leaf tissues. The results suggest that 2,4-DTBP induces oxidative stress through the generation of reactive oxygen species, which cause lipid peroxidation and membrane damage in root tissues and chloroplast in leaf tissues, thus leading to increased levels of antioxidant enzymes.

Additional keywords: allelochemical, H. verticillata., L. chinensis, weed management.


References

Abdullah ASH, Mirghani MES, Jamal P (2011) Antibacterial activity of Malaysian mango kernel. African Journal of Biotechnology 10, 18739–18748.

Aebi H (1984) Catalase in vitro. Methods in Enzymology 105, 121–126.
Catalase in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXltVKis7s%3D&md5=19434764065abd68025da568d36bc0ebCAS | 6727660PubMed |

Ajayi GO, Olagunju JA, Ademuyiwa O, Martins OC (2011) Gas chromatography–mass spectrometry analysis and phytochemical screening of ethanolic root extract of Plumbago zeylanica, Linn. Journal of Medicinal Plants Research 5, 1756–1761.

Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress and signal transduction. Annual Review of Plant Biology 55, 373–399.
Reactive oxygen species: metabolism, oxidative stress and signal transduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvFeisL0%3D&md5=7b4af30e3757b294f0b2825b92f28a6dCAS | 15377225PubMed |

Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiology 141, 391–396.
Production and scavenging of reactive oxygen species in chloroplasts and their functions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xmt1aksbY%3D&md5=6b815132900eb0c7e818679ce6a3b538CAS | 16760493PubMed |

Ashraf MY, Azmi AR, Khan AH, Ala SA (1994) Effect of water stress on total phenols, peroxides activity and chlorophyll content in wheat. Acta Physiologiae Plantarum 16, 1–18.

Baar J, Ozinga W, Smeers IL, Kuyper TW (1994) Stimulatory and inhibitory effects on needle litter and grass extracts on the growth of some ectomycorrhizal fungi. Soil Biology & Biochemistry 26, 1073–1079.
Stimulatory and inhibitory effects on needle litter and grass extracts on the growth of some ectomycorrhizal fungi.Crossref | GoogleScholarGoogle Scholar |

Barkosky RR, Einhellig FA (2003) Allelopathic interference of plant-water relationships by para-hydroxybenzoic acid. Botanical Bulletin of Academia Sinica 44, 53–58.

Batish DR, Singh HP, Setia N, Kaur S, Kohli RK (2006) 2-Benzoxazolinone (BOA) induced oxidative stress, lipid peroxidation and changes in some antioxidant enzyme activities in mungbean (Phaseolus aureus). Plant Physiology and Biochemistry 44, 819–827.
2-Benzoxazolinone (BOA) induced oxidative stress, lipid peroxidation and changes in some antioxidant enzyme activities in mungbean (Phaseolus aureus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsl2htA%3D%3D&md5=74f0786cfe466c26a35f86786e2e2cb1CAS | 17107811PubMed |

Batish DR, Lavanya K, Singh HP, Kohli RK (2007) Root-mediated allelopathic interference of nettle-leaved goosefoot (Chenopodium murale) on wheat (Triticum aestivum). Journal of Agronomy & Crop Science 193, 37–44.
Root-mediated allelopathic interference of nettle-leaved goosefoot (Chenopodium murale) on wheat (Triticum aestivum).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtF2itrc%3D&md5=b76cf21cb80ba6387d239ce4e90e23e5CAS |

Baziramakenga R, Leroux GD, Simard RR (1995) Effects of benzoic and cinnamic acids on membrane permeability of soybean roots. Journal of Chemical Ecology 21, 1271–1285.
Effects of benzoic and cinnamic acids on membrane permeability of soybean roots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXosVGms7Y%3D&md5=cfa8bf02813c60fdc061f0ca546e838cCAS | 24234626PubMed |

Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annals of Botany 91, 179–194.
Antioxidants, oxidative damage and oxygen deprivation stress: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitVCksbw%3D&md5=fcd83b37c8067db9bd9b1b6d2854ace6CAS | 12509339PubMed |

Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248–254.
A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XksVehtrY%3D&md5=892ed459f97ed9c0a1a4311cd3be3fceCAS | 942051PubMed |

Chai Q, Feng FX (2007) Identification of root exudation of Zea mays L. and allelopathy of 1,2-benzenedicarboxylic acid. Journal of Gansu Agricultural University 5, 43–48. [in Chinese]

Choi Y, Lee J (2009) Antioxidant and antiproliferative properties of a tocotrienol-rich fraction from grape seeds. Food Chemistry 114, 1386–1390.
Antioxidant and antiproliferative properties of a tocotrienol-rich fraction from grape seeds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitFCjt7k%3D&md5=727cd717b2e4efcf394cd7e0e3b6497dCAS |

Chuah TS, Norhafizah MZ, Ismail BS (2014) Phytotoxic effects of the extracts and compounds isolated from Pennisetum purpureum (Napier grass) on Leptochloa chinensis germination and seedling growth in aerobic rice system. Weed Science 62, 457–467.
Phytotoxic effects of the extracts and compounds isolated from Pennisetum purpureum (Napier grass) on Leptochloa chinensis germination and seedling growth in aerobic rice system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVKgtrjJ&md5=ab57a87d37ff7f0ba1b0117db2c320c9CAS |

Cruz-Ortega R, Ayala-Cordero G, Anaya AL (2002) Allelochemical stress produced by the aqueous leachate of Callicarpa acuminata: Effects on roots of bean, maize, and tomato. Plant Physiology 116, 20–27.
Allelochemical stress produced by the aqueous leachate of Callicarpa acuminata: Effects on roots of bean, maize, and tomato.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xnt1elsrk%3D&md5=f0ce19936a0876de97c2eb45750fef3cCAS |

Darier SM, Tammam AA (2012) Potentially phytotoxic effect of aqueous extract of Achillea santolina induced oxidative stress on Vicia faba and Hordeum vulgare. Romanian Journal of Biology – Plant Biology 57, 3–25.

EPA (2001) ‘Alkylphenols category section one development of categories and test plans.’ (US Environment Protection Agency: New York)

Farooq M, Aziz T, Wahid A, Lee DJ, Siddique KHM (2009) Chilling tolerance in maize: agronomic and physiological approaches. Crop & Pasture Science 60, 501–516.
Chilling tolerance in maize: agronomic and physiological approaches.Crossref | GoogleScholarGoogle Scholar |

Farquhar GD, Sharkey TD (1982) Stomatal conductance and photosynthesis. Annual Review of Plant Physiology 33, 317–345.
Stomatal conductance and photosynthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XktlKjs7o%3D&md5=73b53c64325ed2f2c8124a14f5fbe686CAS |

Forman HJ, Torres M, Fukuto J (2002) Redox signaling. Molecular and Cellular Biochemistry 234/235, 49–62.
Redox signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkslKltr4%3D&md5=d30f33a9ca454156dfe562dc7db5d436CAS |

Galindo JCG, Hernandez A, Dayan FE, Tellez MR, Macias FA, Paul RN, Duke SO (1999) Dehydrozaluzanin C, a natural sesquiterpenolide, causes rapid plasma membrane leakage. Phytochemistry 52, 805–813.
Dehydrozaluzanin C, a natural sesquiterpenolide, causes rapid plasma membrane leakage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtFeqtQ%3D%3D&md5=9ea38802d9ba153efc5d0653fad00e30CAS |

Gonzalez-Bernardo E, Aguilar MI, Delgado G, King-Diaz B, Lotina-Hennsen B (2003) Photosynthetic electron transport interaction of xanthorrhizol isolated from Iostephane heterophylla and its derivatives. Plant Physiology 119, 598–604.
Photosynthetic electron transport interaction of xanthorrhizol isolated from Iostephane heterophylla and its derivatives.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpslShurg%3D&md5=b7aa5fec7a2d1df79c731f75545fdce0CAS |

Hadacek F (2002) Secondary metabolites as plant traits: current assessment and future perspectives. Critical Reviews in Plant Sciences 21, 273–322.
Secondary metabolites as plant traits: current assessment and future perspectives.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtlKltrY%3D&md5=214ff59102dc53e1968e9a03695c13a4CAS |

Halliwell B (1991) Oxygen radicals: their formation in plant tissues and their role in herbicide damage. In ‘Herbicides’. (Eds NR Baker, MP Percival) pp. 87–129. (Elsevier Science: Amsterdam)

Hanba YT, Kogami H, Terashima I (2003) The effect of internal CO2 conductance on leaf carbon isotope ratio. Isotopes in Environmental and Health Studies 39, 5–13.
The effect of internal CO2 conductance on leaf carbon isotope ratio.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjt1aktLk%3D&md5=061d9885a31b63a13ad33fef64486d74CAS | 12812251PubMed |

Hassannejad S, Ghafarbi SP, Lotfi R (2013) Allelopathic effects of wheat and barley on emergence and seedling growth of some weed species. International Journal of Biosciences 3, 128–134.

Hernández-Terrones MG, Aguilar MI, King-Diaz B, Lotina-Hennsen B (2003) Inhibition of photosystem II in spinach chloroplasts by trachyloban-19-oic acid. Pesticide Biochemistry and Physiology 77, 12–17.
Inhibition of photosystem II in spinach chloroplasts by trachyloban-19-oic acid.Crossref | GoogleScholarGoogle Scholar |

Ishii-Iwamoto E, Abrahim D, Sert MA, Bonato CM, Kelmer-Bracht AM, Bracht A (2006) Mitochondria as a site of allelochemical action. In ‘Allelopathy: a physiological process with ecological implications’. (Eds MJ Reigosa, N Pedrol, L Gonza’lez) pp. 267–284. (Springer Publishers: Dordrecht, The Netherlands)

Kadoma Y, Ito S, Atsumi T, Fujisawa S (2009) Mechanisms of cytotoxicity of 2- or 2, 6-di-tert-butylphenols and 2-methoxyphenols in terms of inhibition rate constant and a theoretical parameter. Chemosphere 74, 626–632.
Mechanisms of cytotoxicity of 2- or 2, 6-di-tert-butylphenols and 2-methoxyphenols in terms of inhibition rate constant and a theoretical parameter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosVWitQ%3D%3D&md5=1bdcfc4c0b16b3ce50766664a147afc9CAS | 19084262PubMed |

Lara-Nuñez A, Romero-Romero T, Ventura JL, Blancas V, Anaya AL, Cruz-Ortega R (2006) Allelochemical stress causes inhibition of growth and oxidative damage in Lycopersicon esculentum Mill. Plant, Cell & Environment 29, 2009–2016.
Allelochemical stress causes inhibition of growth and oxidative damage in Lycopersicon esculentum Mill.Crossref | GoogleScholarGoogle Scholar |

Lee JG, Lee BY, Lee HJ (2006) Accumulation of phytotoxic organic acids in reused nutrient solution during hydroponic cultivation of lettuce (Lactuca sativa L.). Scientia Horticulturae 110, 119–128.
Accumulation of phytotoxic organic acids in reused nutrient solution during hydroponic cultivation of lettuce (Lactuca sativa L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xps1Olsbo%3D&md5=9f1d749c97b56a523f025b4748dec50dCAS |

Leu E, Krieger-Liszkay A, Goussias C, Gross EM (2002) Polyphenolic allelochemicals from the aquatic angiosperm Myriophyllum spicatum inhibit photosystem II. Plant Physiology 130, 2011–2018.
Polyphenolic allelochemicals from the aquatic angiosperm Myriophyllum spicatum inhibit photosystem II.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktlOh&md5=d572d684d8e64c9bedb3a5b09d3d0c82CAS | 12481084PubMed |

Lüttge U, Haridasan M, Fernandes GW, Mattos EA, Trimborn P, Franco AC, Caldas LS, Ziegler H (1998) Photosynthesis of mistletoes in relation to their hosts at various sites in tropical Brazil. Trees - Structure and Function 12, 167–174.
Photosynthesis of mistletoes in relation to their hosts at various sites in tropical Brazil.Crossref | GoogleScholarGoogle Scholar |

Malek SNA, Shin SK, Wahab NA, Yaacob H (2009) Cytotoxic components of Pereskia bleo (Kunth) DC. (Cactaceae) leaves. Molecules 14, 1713–1724.
Cytotoxic components of Pereskia bleo (Kunth) DC. (Cactaceae) leaves.Crossref | GoogleScholarGoogle Scholar |

Masia A (2003) Physiological effects of oxidative stress in relation to ethylene in post-harvest produce. In ‘Postharvest oxidative stress in horticultural crops’. (Ed. DM Hodges) pp. 165–197. (Food Products Press: New York)

Matsumoto K, Ohta T, Takafumi T (2005) Dependence of stomatal conductance on leaf chlorophyll concentration and meteorological variables. Agricultural and Forest Meteorology 132, 44–57.
Dependence of stomatal conductance on leaf chlorophyll concentration and meteorological variables.Crossref | GoogleScholarGoogle Scholar |

Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. Environmental and Experimental Botany 51, 659–668.
Chlorophyll fluorescence—a practical guide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtF2js74%3D&md5=664502652b5c46b1e4e27ab09b8c978aCAS |

McCord JM, Fridovich I (1969) Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). The Journal of Biological Chemistry 244, 6049–6055.

Mersie W, Singh M (1993) Phenolics acids affect photosynthesis and protein synthesis by isolated leaf cells of velvet-leaf. Journal of Chemical Ecology 19, 1293–1301.
Phenolics acids affect photosynthesis and protein synthesis by isolated leaf cells of velvet-leaf.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXlsFKnu7w%3D&md5=afb445f99a28731f00bc455153ecb175CAS | 24249162PubMed |

Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends in Plant Science 9, 490–498.
Reactive oxygen gene network of plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotF2msrg%3D&md5=928eca17761be37e17441a34dfa44f20CAS | 15465684PubMed |

Nishida N, Tamotsu S, Nagata N, Saito C, Sakai A (2005) Allelopathic effects of volatile monoterpenoids produced by Salvia leucophylla: inhibition of cell proliferation and DNA synthesis in the root apical meristem of Brassica campestris seedlings. Journal of Chemical Ecology 31, 1187–1203.
Allelopathic effects of volatile monoterpenoids produced by Salvia leucophylla: inhibition of cell proliferation and DNA synthesis in the root apical meristem of Brassica campestris seedlings.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXks1eksr8%3D&md5=0962acc451f7ff919d357cb409ce06ddCAS | 16124241PubMed |

Norman C, Howell KA, Harvey Millar A, Whelan JM, Day DA (2004) Salicylic acid is an uncoupler and inhibitor of mitochondrial electron transport. Plant Physiology 134, 492–501.
Salicylic acid is an uncoupler and inhibitor of mitochondrial electron transport.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVans7s%3D&md5=9946d3d2300ded42d9605da7d0f87ee2CAS | 14684840PubMed |

Oluwatoyin SM, Illeogbulam NG, Joseph A (2011) Phytochemical and antimicrobial studies on the aerial parts of Heliotropium indicum Linn. Annals of Biological Research 2, 129–136.

Oracz K, Bailly C, Gniazdowska A, Come D, Corbineau F, Bogatek R (2007) Induction of oxidative stress by sunflower phytotoxins in germinating mustard seeds. Journal of Chemical Ecology 33, 251–264.
Induction of oxidative stress by sunflower phytotoxins in germinating mustard seeds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmt1Kltg%3D%3D&md5=040e2d3ae1dead71dcb2a03ec6e60da0CAS | 17216362PubMed |

Patterson DT (1981) Effects of allelochemicals on growth and physiological responses of soybean (Glycine max). Weed Science 29, 53–59.

Pompeu GB, Gratão PL, Vitorello VA, Azevedo RA (2008) Antioxidant isoenzyme responses to nickel-induced stress in tobacco cell suspension culture. Scientia Agricola 65, 548–552.
Antioxidant isoenzyme responses to nickel-induced stress in tobacco cell suspension culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsVCgtbc%3D&md5=2637350f4f82ba57dbfc017cb5e87370CAS |

Putter J (1974) Peroxidases. In ‘Methods of enzymatic analysis: II’. (Ed. HU Bergmeyer) pp. 685–690. (Academic Press: New York)

Rana VS, Blazquez MA (2007) Chemical constituents of Gynura cusimbua aerial parts. Journal of Essential Oil Research 19, 21–22.
Chemical constituents of Gynura cusimbua aerial parts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitVegtrs%3D&md5=b07b71170933c61da7438c349c498e31CAS |

Rhoads DM, Umbach AL, Subbaiah CC, Siedow JN (2006) Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. Plant Physiology 141, 357–366.
Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xmt1aksb0%3D&md5=ece3631a829d2432e4be3fa20df29614CAS | 16760488PubMed |

Ribera AE, Reyes-Díaz MM, Alberdi MR, Alvarez-Cortez DA, Rengel Z, Mora MDLL (2013) Photosynthetic impairment caused by manganese toxicity and associated antioxidative responses in perennial ryegrass. Crop & Pasture Science 64, 696–707.
Photosynthetic impairment caused by manganese toxicity and associated antioxidative responses in perennial ryegrass.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsF2ltLrP&md5=55d081a2e97e4ad839b3a17ba04d0d32CAS |

Rimando AM, Dayan FE, Streibig JC (2003) PSII inhibitory activity of resorcinolic lipids from Sorghum bicolor. Journal of Natural Products 66, 42–45.
PSII inhibitory activity of resorcinolic lipids from Sorghum bicolor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xpt1Cls7o%3D&md5=0b29dc1ea0aa24f90057742892dfdacfCAS | 12542343PubMed |

Romero-Romero T, Sa’nchez-Nieto S, SanJuan-Badillo A, Anaya AL, Cruz-Ortega R (2005) Comparative effects of allelochemical and water stress in roots of Lycopersicon esculentum Mill Plant (Solanaceae). Plant Science 168, 1059–1066.
Comparative effects of allelochemical and water stress in roots of Lycopersicon esculentum Mill Plant (Solanaceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhslWnsL8%3D&md5=bd7d8d42e97f65281b35e213b175c77cCAS |

Shao H, Huang X, Wang R, Eminniyaz A, Wang J, Wu S (2013) Potential allelopathic effects of Xanthium italicum Moretti on wheat. Journal of Medicinal Plants Research 7, 587–592.

Singh NB, Sunaina (2014) Allelopathic stress produced by bitter gourd (Momordica charantia L.). Journal of Stress Physiology and Biochemistry 2, 5–14.

Singh HP, Batish DR, Kaur S, Ramezani H, Kohli RK (2002) Comparative phytotoxicity of four monoterpenes against Cassia occidentalis. Annals of Applied Biology 141, 111–116.
Comparative phytotoxicity of four monoterpenes against Cassia occidentalis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XosFSmtrs%3D&md5=a56c8eb0f834d3a05091170a664694e0CAS |

Singh NB, Singh A, Singh D (2010) Autotoxicity of maize and its mitigation by plant growth promoting rhizobacterium Paenibacillus ploymyxa. Allelopathy Journal 25, 195–204.

Suh HJ, Park S, Park S (2011) Inhibition of browning on fresh apple juices by natural phytochemicals from Rumex crispus L. seed. Journal of the Korean Society for Applied Biological Chemistry 54, 524–530.
Inhibition of browning on fresh apple juices by natural phytochemicals from Rumex crispus L. seed.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlCnsr7L&md5=2dbabf7789b98fece8f12ab6ed9f22e4CAS |

Tallman G (2004) Are diurnal patterns of stomatal movement the result of alternating metabolism of endogenous guard cell ABA and accumulation of ABA delivered to the apoplast around guard cells by transpiration. Journal of Experimental Botany 55, 1963–1976.
Are diurnal patterns of stomatal movement the result of alternating metabolism of endogenous guard cell ABA and accumulation of ABA delivered to the apoplast around guard cells by transpiration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsVyisbg%3D&md5=996da377ed3b49e4855c137c883c9d17CAS | 15310824PubMed |

Uddin MR, Park KW, Han SM, Pyon JY (2012) Effects of sorgoleone allelochemical on chlorophyll fluorescence and growth inhibition in weeds. Allelopathy Journal 30, 61–70.

Ünyayar A, Mazmanci MA, Atacag H, Erkurt EA, Coral G (2005) A drimaren blue X3LR dye decolorizing enzyme from Funalia trogii: one step isolation and identification. Enzyme and Microbial Technology 36, 10–16.
A drimaren blue X3LR dye decolorizing enzyme from Funalia trogii: one step isolation and identification.Crossref | GoogleScholarGoogle Scholar |

Weir TL, Park SW, Vivanco JM (2004) Biochemical and physiological mediated by allelochemicals. Current Opinion in Plant Biology 7, 472–479.
Biochemical and physiological mediated by allelochemicals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsVWhurY%3D&md5=2f7cd56300470ccdbe57b2996b9d47a1CAS | 15231272PubMed |

Xuan TD, Toyama T, Fukuta M, Khanh TD, Tawata S (2009) Chemical interaction in the invasiveness of cogongrass (Imperata cylindrica (L.) Beauv.). Journal of Agricultural and Food Chemistry 57, 9448–9453.
Chemical interaction in the invasiveness of cogongrass (Imperata cylindrica (L.) Beauv.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1art7fI&md5=fb008598f68d2761c9d0f2c52ee5c856CAS | 19810700PubMed |

Yamamoto Y, Kobayashi Y, Devi SR, Rikiishi S, Matsumono H (2003) Oxidative stress triggered by aluminium in plant roots. Plant and Soil 255, 239–243.
Oxidative stress triggered by aluminium in plant roots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotVyqurs%3D&md5=67644635353503d2f3a55243d3a75e5fCAS |

Yang CM, Lee CN, Chou CH (2002) Effects of three allelopathic phenolics on chlorophyll accumulation of rice (Oryza sativa) seedlings: I. Inhibition of supply-orientation. Botanical Bulletin of Academia Sinica 43, 299–304.

Yang CM, Chang F, Lin SJ, Chou CH (2004) Effects of three allelopathic phenolics on chlorophyll accumulation of rice (Oryza sativa) seedlings: II. Stimulation of consumption-orientation. Botanical Bulletin of Academia Sinica 45, 119–125.

Ye SF, Zhou YH, Sun Y, Zou LY, Yu JQ (2006) Cinnamic acid causes oxidative stress in cucumber roots, and promotes incidence of Fusarium wilt. Environmental and Experimental Botany 56, 255–262.
Cinnamic acid causes oxidative stress in cucumber roots, and promotes incidence of Fusarium wilt.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktVyisLg%3D&md5=0486238134dad98756e3eec5d6f3492aCAS |

Yu JQ, Ye SF, Zhang MF, Hu WH (2003) Effects of root exudates and aqueous root extracts of cucumber (Cucumis sativus), and allelochemicals on photosynthesis and antioxidant enzymes in cucumber. Biochemical Systematics and Ecology 31, 129–139.
Effects of root exudates and aqueous root extracts of cucumber (Cucumis sativus), and allelochemicals on photosynthesis and antioxidant enzymes in cucumber.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXislOqsQ%3D%3D&md5=90f5a82ccbe268dcd99f19c6526649f0CAS |

Yu J, Zhang Y, Niu C, Li J (2006) Effects of two kinds of allelochemicals on photosynthesis and chlorophyll fluorescence parameters of Solanum melongena L. seedlings. Journal of Applied Ecology 17, 1629–1632.

Zeng RS, Luo SM, Shi YH, Shi MB, Tu CY (2001) Physiological and biochemical mechanism of allelopathy of secalonic acid F on higher plants. Agronomy Journal 93, 72–79.
Physiological and biochemical mechanism of allelopathy of secalonic acid F on higher plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXitl2mu7o%3D&md5=172e3897964f3c6cc35b5a2aec617ee4CAS |

Zhang XH, Zhang EH, Lang DY (2011) Autotoxic compounds from rhizosphere soil of Humulus lupulus L. extracts: identification and biological activity. Agronomy Journal 103, 695–701.
Autotoxic compounds from rhizosphere soil of Humulus lupulus L. extracts: identification and biological activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnvFOhtL8%3D&md5=b605cb7b34d4487d3ae1c59ce8538b15CAS |

Zhou YH, Yu JQ (2006) Allelochemicals and photosynthesis. In ‘Allelopathy: a physiological process with ecological implications’. (Eds MJ Reigosa, N Pedrol, L Gonza’lez) pp. 127–139. (Springer Publishers: Dordrecht, The Netherlands)

Zhou BL, Chen ZX, Du L, Xie YH, Zhang Q, Ye XL (2011) Allelopathy of root exudates from different resistant eggplants to Verticillium dahliae and the identification of allelochemicals. African Journal of Biotechnology 10, 8284–8290.