Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
REVIEW

Resources and strategies for implementation of genomic selection in breeding of forage species

J. W. Forster A B C F , M. L. Hand A B E , N. O. I. Cogan A B , B. J. Hayes A B C , German C. Spangenberg A B C and K. F. Smith B D
+ Author Affiliations
- Author Affiliations

A Department of Primary Industries, Biosciences Research Division, AgriBio, Centre for AgriBiosciences, La Trobe University Research and Development Park, Bundoora, Vic. 3083, Australia.

B Dairy Futures Cooperative Research Centre, AgriBio, Centre for AgriBiosciences, La Trobe University Research and Development Park, Bundoora, Vic. 3083, Australia.

C La Trobe University, Bundoora, Vic. 3086, Australia.

D Department of Agriculture and Food Systems, Melbourne School of Land and Environment, The University of Melbourne, Private Bag 105, Hamilton, Vic. 3300, Australia.

E Present address: CSIRO Plant Industry – Waite Campus, Hartley Grove, Urrbrae, SA 5064, Australia.

F Corresponding author. Email: john.forster@depi.vic.gov.au

Crop and Pasture Science 65(11) 1238-1247 https://doi.org/10.1071/CP13361
Submitted: 28 October 2013  Accepted: 10 August 2014   Published: 9 September 2014

Abstract

Forage species provide the major feed-base for livestock grazing industries supporting production of dairy products, red meat and animal fibres. Because of the complex, multifactorial and highly environmentally sensitive nature of many key breeders’ traits for forage crops, implementation of genomic selection (GS) is a particularly attractive option. Although basic strategies for GS implementation have been devised, forage species display a broad range of biological factors that may influence the precise design of GS-based programs. These factors are described and exemplified by reference to several temperate and warm-season grass and legume species. Current knowledge with respect to such factors, along with the availability of suitable genomic resources and prospects for future activities, is described for several representative species (white clover, tall fescue and phalaris). Generic issues and benefits associated with GS implementation in forage breeding are also assessed.

Additional keywords: grass, legume, polyploidy, self-incompatibility, single nucleotide polymorphism, symbiont.


References

Ahloowalia BS (1977) Hybrids between tetraploid Italian and perennial ryegrass. Theoretical and Applied Genetics 49, 229–235.
Hybrids between tetraploid Italian and perennial ryegrass.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2czjvVSqsA%3D%3D&md5=d6083e1c6879fe7b183a1271baaee1eeCAS | 24407333PubMed |

Andersen JR, Jensen LB, Asp T, Lübberstedt T (2006) Vernalisation response in perennial ryegrass (Lolium perenne L.) involves orthologues of diploid wheat (Triticum monococcum) VRN1 and rice (Oryza sativa) Hd1. Plant Molecular Biology 60, 481–494.
Vernalisation response in perennial ryegrass (Lolium perenne L.) involves orthologues of diploid wheat (Triticum monococcum) VRN1 and rice (Oryza sativa) Hd1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitFOhs7s%3D&md5=cf5624ea7984d0c8b0e0b34299e40a60CAS | 16525886PubMed |

Atwood SS (1940) Genetics of cross-incompatibility among self-incompatible plants of Trifolium repens. Journal – American Society of Agronomy 32, 955–968.
Genetics of cross-incompatibility among self-incompatible plants of Trifolium repens.Crossref | GoogleScholarGoogle Scholar |

Auzanneau J, Huyghe C, Julier B, Barre P (2007) Linkage disequilibrium in synthetic varieties of perennial ryegrass. Theoretical and Applied Genetics 115, 837–847.
Linkage disequilibrium in synthetic varieties of perennial ryegrass.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2snnsVGrsQ%3D%3D&md5=b1f6ab8bff1dc8c61626957654e937caCAS | 17701396PubMed |

Barrett BA, Baird IJ, Woodfield DR (2005) A QTL analysis of white clover seed production. Crop Science 45, 1844–1850.
A QTL analysis of white clover seed production.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVOrt7bM&md5=17168602dce7fcb009a24fd08604f193CAS |

Barrett B, Baird I, Woodfield D (2009) White clover seed yield: a case study in marker-assisted selection. In ‘Proceedings 5th International Symposium on the Molecular Breeding of Forage and Turf’. (Eds T Yamada, G Spangenberg) pp. 241–250. (Springer: New York)

Bouton J, Smith S Bouton J, Smith S (1992) Field screening for rhizome number in tall fescue. Crop Science 32, 686–689.
Field screening for rhizome number in tall fescue.Crossref | GoogleScholarGoogle Scholar |

Bouton JH, Gates RN, Hill GM, Owsley M, Wood DT (1993) Registration of ‘Georgia 5’ tall fescue. Crop Science 33, 1405
Registration of ‘Georgia 5’ tall fescue.Crossref | GoogleScholarGoogle Scholar |

Bouton JH, Duncan RR, Gates RN, Hoveland CS, Wood DT (1997) Registration of ‘Jesup’ tall fescue. Crop Science 37, 1011–1012.
Registration of ‘Jesup’ tall fescue.Crossref | GoogleScholarGoogle Scholar |

Brazauskas G, Pašakiskiené I, Asp T, Lübberstedt T (2010) Nucleotide diversity and linkage disequilibrium in five Lolium perenne genes with putative role in shoot morphology. Plant Science 179, 194–201.
Nucleotide diversity and linkage disequilibrium in five Lolium perenne genes with putative role in shoot morphology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosVyqu7c%3D&md5=d9c024f251fa3f8caac056e4d778b887CAS |

Caradus JR (1986) World checklist of white clover varieties. New Zealand. Journal of Experimental Agriculture 14, 119–164.

Carpenter JA, Casler MD (1990) Divergent phenotypic selection response in smooth bromegrass for forage yield and nutritive value. Crop Science 30, 17–22.
Divergent phenotypic selection response in smooth bromegrass for forage yield and nutritive value.Crossref | GoogleScholarGoogle Scholar |

Casler MD, Brummer EC (2008) Theoretical expected genetic gains for among-and-within-family selection methods in perennial forage crops. Crop Science 48, 890–902.
Theoretical expected genetic gains for among-and-within-family selection methods in perennial forage crops.Crossref | GoogleScholarGoogle Scholar |

Charmet G, Balfourier F, Bion A (1990) Agronomic evaluation of a collection of French perennial ryegrass populations: multivariate classification using genotype × environment interactions. Agronomie 10, 807–823.
Agronomic evaluation of a collection of French perennial ryegrass populations: multivariate classification using genotype × environment interactions.Crossref | GoogleScholarGoogle Scholar |

Christensen MJ, Leuchtmann A, Rowan DD, Tapper BA (1993) Taxonomy of Acremonium endophytes of tall fescue (Festuca arundinacea), meadow fescue (F. pratensis) and perennial ryegrass (Lolium perenne). Mycological Research 97, 1083–1092.
Taxonomy of Acremonium endophytes of tall fescue (Festuca arundinacea), meadow fescue (F. pratensis) and perennial ryegrass (Lolium perenne).Crossref | GoogleScholarGoogle Scholar |

Cogan NOI, Hand ML, Drayton MC, Baillie RC, Forster J.W. (2012) Accelerated genomics in allotetraploid white clover (Trifolium repens L.) based on high-throughput sequencing. In ‘Proceedings 7th International Symposium on Molecular Breeding of Forage and Turf’. Salt Lake City, UT, USA. (Eds BS Bushman, G Spangenberg) p. 84. (Utah State University: Logan, UT, USA) Available at: http://ars.usda.gov/SP2UserFiles/Place/54281000/MBFT2012Proceedings.pdf

Comai L (2005) The advantages and disadvantages of being polyploid. Nature Reviews. Genetics 6, 836–846.
The advantages and disadvantages of being polyploid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFygt7%2FO&md5=9892c7ca35435f9339d8906fdf681521CAS | 16304599PubMed |

Conaghan P, Casler MD (2011) A theoretical and practical analysis of the optimum breeding system for perennial ryegrass. Irish Journal of Agricultural and Food Research 50, 47–63.

Cornish MA, Hayward MD, Lawrence MJ (1979) Self-incompatibility in ryegrass. I. Genetic control in diploid Lolium perenne. Heredity 43, 95–106.
Self-incompatibility in ryegrass. I. Genetic control in diploid Lolium perenne.Crossref | GoogleScholarGoogle Scholar |

Crossa J, Beyene Y, Kassa S, Pérez P, Hickey JM, Chen C, de los Campos G, Burgueño J, Windhausen VS, Buckler E, Jannink J-L, Lopez Cruz MA, Babu R (2013) Genomic prediction in maize breeding populations with genotyping-by-sequencing. G3. Genes-Genomes-Genetics 3, 1903–1926.

Culvenor RA, Simpson RJ (2014) Persistence traits in phalaris (Phalaris aquatica L.) and recent advances through breeding. Crop & Pasture Science 65, 1165–1176.
Persistence traits in phalaris (Phalaris aquatica L.) and recent advances through breeding.Crossref | GoogleScholarGoogle Scholar |

Culvenor RA, Boschma SP, Reed KFM (2009a) Response to selection for grazing tolerance in phalaris (Phalaris aquatica L.) 1. Persistence under grazing in three environments. Crop & Pasture Science 60, 1097–1106.
Response to selection for grazing tolerance in phalaris (Phalaris aquatica L.) 1. Persistence under grazing in three environments.Crossref | GoogleScholarGoogle Scholar |

Culvenor RA, Boschma SP, Reed KFM (2009b) Response to selection for grazing tolerance in phalaris (Phalaris aquatica L.) 2. Correlated response in yield potential, plant characteristics and alkaloid levels. Crop & Pasture Science 60, 1107–1116.
Response to selection for grazing tolerance in phalaris (Phalaris aquatica L.) 2. Correlated response in yield potential, plant characteristics and alkaloid levels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Ons7bL&md5=6f5c562c1b5e3b0f5a1ead26e2debec8CAS |

Culvenor RA, McDonald SE, Veness P, Watson D, Dempsey W (2011) Effect of improved Al tolerance on establishment of the perennial grass phalaris, on strongly acidic soils and its relation to seasonal rainfall. Crop & Pasture Science 62, 413–426.
Effect of improved Al tolerance on establishment of the perennial grass phalaris, on strongly acidic soils and its relation to seasonal rainfall.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntVGlt78%3D&md5=b787845c3056aa771a1f88290653cdc8CAS |

Cuyeu R, Rosso B, Pagnano E, Soto G, Fox R, Ayub ND (2013) Genetic diversity in a world germplasm collection of tall fescue. Genetics and Molecular Biology 36, 237–242.
Genetic diversity in a world germplasm collection of tall fescue.Crossref | GoogleScholarGoogle Scholar | 23885206PubMed |

Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next generation sequencing. Nature Reviews. Genetics 12, 499–510.
Genome-wide genetic marker discovery and genotyping using next generation sequencing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnslShu7k%3D&md5=ced8cd6d00aab7658fbd5768658a07d6CAS | 21681211PubMed |

Doležel J, Bartoš J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytometry. Part A 51A, 127–128.

Ekanayake PN, Hand ML, Spangenberg GC, Forster JW, Guthridge KM (2012) Genetic diversity and host specificity of fungal endophyte taxa in fescue pasture grasses. Crop Science 52, 2243–2252.
Genetic diversity and host specificity of fungal endophyte taxa in fescue pasture grasses.Crossref | GoogleScholarGoogle Scholar |

Ellison NW, Liston A, Steiner JJ, Williams WM, Taylor NL (2006) Molecular phylogenetics of the clover genus (Trifolium – Leguminosae). Molecular Phylogenetics and Evolution 39, 688–705.
Molecular phylogenetics of the clover genus (Trifolium – Leguminosae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkslSlt74%3D&md5=58e04285cb0f405d310cbee4e09b1186CAS | 16483799PubMed |

Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6, e19379
A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtVKru7Y%3D&md5=30f9598e100fb686f039fe3cd5660cd7CAS | 21573248PubMed |

Evans G, Asay K, Jenkins R (1973) Meiotic irregularities in hybrids between diverse genotypes of tall fescue (Festuca arundinacea Schreb.). Crop Science 13, 376–379.
Meiotic irregularities in hybrids between diverse genotypes of tall fescue (Festuca arundinacea Schreb.).Crossref | GoogleScholarGoogle Scholar |

Ferreira V, Reynoso L, Szpiniak B, Grass E (2002) Cytological analysis of the Phalaris arundinacea (L.) × Phalaris aquatica (L.) amphidiploid. Caryologia 55, 151–160.
Cytological analysis of the Phalaris arundinacea (L.) × Phalaris aquatica (L.) amphidiploid.Crossref | GoogleScholarGoogle Scholar |

Fiil A, Lenk I, Petersen K, Jensen CS, Nielsen KK, Schejbel B, Andersen JR, Lübberstedt T (2011) Nucleotide diversity and linkage disequilibrium of nine genes with putative effects on flowering time in perennial ryegrass (Lolium perenne L.). Plant Science 180, 228–237.
Nucleotide diversity and linkage disequilibrium of nine genes with putative effects on flowering time in perennial ryegrass (Lolium perenne L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1agtL3N&md5=5e55c9c407c11b713dc7305a68e4f539CAS | 21421365PubMed |

Gallagher RT, Hawkes AD, Steyn PS, Vleggar R (1984) Tremorgenic neurotoxins from perennial ryegrass causing ryegrass staggers disorder of livestock: structure elucidation of lolitrem B. Journal of the Chemical Society. Chemical Communications 9, 614–616.
Tremorgenic neurotoxins from perennial ryegrass causing ryegrass staggers disorder of livestock: structure elucidation of lolitrem B.Crossref | GoogleScholarGoogle Scholar |

George J, Dobrowolski MP, van Zijll de Jong E, Cogan NOI, Smith KF, Forster JW (2006) Assessment of genetic diversity in cultivars of white clover (Trifolium repens L.) detected by SSR polymorphisms. Genome 49, 919–930.
Assessment of genetic diversity in cultivars of white clover (Trifolium repens L.) detected by SSR polymorphisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlCku7bJ&md5=9dfff8450d2b6c7b11bd7f12dc3be845CAS | 17036067PubMed |

Guthridge KM, Dupal MP, Kölliker R, Jones ES, Smith KF, Forster JW (2001) AFLP analysis of genetic diversity within and between populations of perennial ryegrass (Lolium perenne L.). Euphytica 122, 191–201.
AFLP analysis of genetic diversity within and between populations of perennial ryegrass (Lolium perenne L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xltlahsg%3D%3D&md5=481cdaa725686a6a84cac10e24100ac0CAS |

Hand ML, Ponting RC, Drayton MC, Lawless KA, Cogan NOI, Brummer EC, Sawbridge TI, Spangenberg GC, Smith KF, Forster JW (2008) Identification of homologous, homoeologous and paralogous sequence variants in an outbreeding allopolyploid species based on comparison with progenitor taxa. Molecular Genetics and Genomics 280, 293–304.
Identification of homologous, homoeologous and paralogous sequence variants in an outbreeding allopolyploid species based on comparison with progenitor taxa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVGltbfP&md5=21cc10b7dc4b4610b3f77172db6bf0d4CAS | 18642031PubMed |

Hand ML, Cogan NOI, Stewart AV, Forster JW (2010) Evolutionary history of tall fescue morphotypes related to molecular phylogenetics of the LoliumFestuca species complex. BMC Evolutionary Biology 10, 303
Evolutionary history of tall fescue morphotypes related to molecular phylogenetics of the LoliumFestuca species complex.Crossref | GoogleScholarGoogle Scholar | 20937141PubMed |

Hand ML, Cogan NOI, Forster JW (2012a) Molecular characterisation and interpretation of genetic diversity within globally distributed germplasm collection of tall fescue (Festuca arundinacea Schreb.) and meadow fescue (F. pratensis Huds.). Theoretical and Applied Genetics 124, 1127–1137.
Molecular characterisation and interpretation of genetic diversity within globally distributed germplasm collection of tall fescue (Festuca arundinacea Schreb.) and meadow fescue (F. pratensis Huds.).Crossref | GoogleScholarGoogle Scholar | 22222441PubMed |

Hand ML, Cogan NOI, Forster JW (2012b) Genome-wide SNP identification in multiple morphotypes of allohexaploid tall fescue (Festuca arundinacea Schreb.). BMC Genomics 13, 219
Genome-wide SNP identification in multiple morphotypes of allohexaploid tall fescue (Festuca arundinacea Schreb.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhslamu73L&md5=a4f906dbdd6399e0f79546bd7bc7f48aCAS | 22672128PubMed |

Harris C, Clark S, Reed K, Nie Z, Smith K (2008) Novel Festuca arundinacea Schreb. and Dacytlis glomerata L. germplasm to improve adaptation for marginal environments. Australian Journal of Experimental Agriculture 48, 436–448.
Novel Festuca arundinacea Schreb. and Dacytlis glomerata L. germplasm to improve adaptation for marginal environments.Crossref | GoogleScholarGoogle Scholar |

Hayes BJ, Lewin HA, Goddard ME (2013a) The future of livestock breeding: genomic selection for efficiency, reduced emissions intensity, and adaptation. Trends in Genetics 29, 206–214.
The future of livestock breeding: genomic selection for efficiency, reduced emissions intensity, and adaptation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVKqurbM&md5=5bd128ab486874be7ac1ef765fb688a1CAS | 23261029PubMed |

Hayes BJ, Cogan NOI, Pembleton LW, Goddard ME, Wang J, Spangenberg GC, Forster JW (2013b) Prospects for genomic selection in forage plant species. Plant Breeding 132, 133–143.
Prospects for genomic selection in forage plant species.Crossref | GoogleScholarGoogle Scholar |

Heffner EL, Sorrells ME, Jannink J-L (2009) Genomic selection for crop improvement. Crop Science 49, 1–12.
Genomic selection for crop improvement.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsF2it78%3D&md5=aecf6a77c7c8c592fde59ef52e072856CAS |

Humphreys M, Thomas HM, Morgan WG, Meredith MR, Harper JA, Thomas H, Zwierzykowski Z, Ghesquiere M (1995) Discriminating the ancestral progenitors of hexaploid Festuca arundinacea using genomic in situ hybridisation. Heredity 75, 171–174.
Discriminating the ancestral progenitors of hexaploid Festuca arundinacea using genomic in situ hybridisation.Crossref | GoogleScholarGoogle Scholar |

Isobe SN, Hisano H, Sato S, Hirakawa H, Okumura K, Shirasawa K, Sasamoto S, Watanabe A, Wada T, Kishida Y, Tsuruoka H, Fujishiro T, Yamada M, Kohara M, Tabata S (2012) Comparative genetic mapping and discovery of linkage disequilibrium across linkage groups of white clover (Trifolium repens L.). G3. Genes-Genomes-Genetics 2, 607–617.

Jackson RC, Casey J (1982) Cytogenetic analyses of autoploids: models and methods for triploids to octoploids. American Journal of Botany 69, 487–501.
Cytogenetic analyses of autoploids: models and methods for triploids to octoploids.Crossref | GoogleScholarGoogle Scholar |

Jahufer MZZ, Ford JL, Widdup KH, Harris C, Cousins G, Ayres JF, Lane LA, Hofmann RW, Ballizany WL, Mercer CF, Crush JR, Williams WM, Woodfield DR, Barrett BA (2012) Improving white clover for Australasia. Crop & Pasture Science 63, 739–745.
Improving white clover for Australasia.Crossref | GoogleScholarGoogle Scholar |

Jannink J-L, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Briefings in Functional Genomics 9, 166–177.
Genomic selection in plant breeding: from theory to practice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvF2hu7Y%3D&md5=d8eab064c7ccd2d6a2bbee4ece06270fCAS | 20156985PubMed |

Jenczewski E, Alix K (2004) From diploids to allopolyploids: the emergence of efficient pairing control genes in plants. Critical Reviews in Plant Sciences 23, 21–45.
From diploids to allopolyploids: the emergence of efficient pairing control genes in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXislKms7g%3D&md5=b8bd0c6e6c46e9606ca908c9d4b0670fCAS |

Jenkins G, Chatterjee RN (1994) Chromosome structure and pairing preferences in autotetraploid rye (Secale cereale). Genome 37, 784–793.
Chromosome structure and pairing preferences in autotetraploid rye (Secale cereale).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1czgsl2huw%3D%3D&md5=b2b82456509e187e0dca71b3a6b3dc67CAS | 18470122PubMed |

Jensen LB, Andersen JR, Frei U, Xing Y, Taylor C, Holm PB, Lübberstedt T (2005) QTL mapping of vernalization response in perennial ryegrass (Lolium perenne L.) reveals co-location with an orthologue of wheat VRN1. Theoretical and Applied Genetics 110, 527–536.
QTL mapping of vernalization response in perennial ryegrass (Lolium perenne L.) reveals co-location with an orthologue of wheat VRN1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhsVymsrc%3D&md5=4b03f6838f8197d8560e7a7e3c771088CAS | 15619078PubMed |

Kaur S, Francki MG, Forster JW (2012) Identification, characterisation and interpretation of single nucleotide sequence variation in allopolyploid crop plant species. Plant Biotechnology Journal 10, 125–138.
Identification, characterisation and interpretation of single nucleotide sequence variation in allopolyploid crop plant species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjt1Wksr0%3D&md5=5c116dcfdb871e40bf825697ca46bcf9CAS | 21831136PubMed |

Kelemu S, Takayama Y (1998) An endophytic fungus in the tropical grass Brachiaria brizantha: effect on a leaf spot disease. Phytopathology 88, S46

Kelemu S, White JF, Muñoz F, Takayama Y (2001) An endophyte of the tropical forage grass Brachiaria brizantha: isolating, identifying, and characterising the fungus, and determining it antimycotic properties. Canadian Journal of Microbiology 47, 55–62.
An endophyte of the tropical forage grass Brachiaria brizantha: isolating, identifying, and characterising the fungus, and determining it antimycotic properties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtVShtrc%3D&md5=0a229a59eb5a746867a453860c87d790CAS | 15049450PubMed |

Klaas M, Yang B, Bosch M, Thorogood D, Manzanares C, Armstead IP, Franklin FCH, Barth S (2011) Progress towards elucidating the mechanisms of self-incompatibility in the grasses: further insights from studies in Lolium. Annals of Botany 108, 677–685.
Progress towards elucidating the mechanisms of self-incompatibility in the grasses: further insights from studies in Lolium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFKhs7%2FP&md5=b4c385f3c07a69e5ab627cf40b18af9dCAS | 21798860PubMed |

Kölliker R, Jones ES, Jahufer MZZ, Forster JW (2001) Bulked AFLP analysis for the assessment of genetic diversity in white clover (Trifolium repens L.). Euphytica 121, 305–315.
Bulked AFLP analysis for the assessment of genetic diversity in white clover (Trifolium repens L.).Crossref | GoogleScholarGoogle Scholar |

Latch GCM, Christensen MJ (1985) Artificial infection of grasses with endophytes. Annals of Applied Biology 107, 17–24.
Artificial infection of grasses with endophytes.Crossref | GoogleScholarGoogle Scholar |

Lavergne S, Muenke NJ, Molofsky J (2010) Genome size reduction can trigger rapid phenotypic evolution in invasive plants. Annals of Botany 105, 109–116.
Genome size reduction can trigger rapid phenotypic evolution in invasive plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFyksb7N&md5=04e7954383a55e43c69c43c6a0f2a0a7CAS | 19887472PubMed |

Le Comber SC, Ainouche ML, Kovarik A, Leitch AR (2010) Making a functional diploid: from polysomic to disomic inheritance. New Phytologist 186, 113–122.
Making a functional diploid: from polysomic to disomic inheritance.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3c3nvVWjtQ%3D%3D&md5=8ec518162eb3a6a1b2f369d14139b7fdCAS | 20028473PubMed |

Li X, Han Y, Wei Y, Acharya A, Farmer AD, Ho J, Monteros MJ, Brummer EC (2014) Development of an alfalfa SNP array and its use to evaluate patterns of population structure and linkage disequilibrium. PLoS ONE 9, e84329
Development of an alfalfa SNP array and its use to evaluate patterns of population structure and linkage disequilibrium.Crossref | GoogleScholarGoogle Scholar | 24416217PubMed |

Lutts S, Ndikumana J, Louant BP (1991) Fertility of Brachiaria ruziziensis in interspecific crosses with Brachiaria decumbens and Brachiaria brizantha: meiotic behaviour, pollen viability and seed set. Euphytica 57, 267–274.
Fertility of Brachiaria ruziziensis in interspecific crosses with Brachiaria decumbens and Brachiaria brizantha: meiotic behaviour, pollen viability and seed set.Crossref | GoogleScholarGoogle Scholar |

McCubbin AG, Kao T (2000) Molecular recognition and response in pollen and pistil interactions. Annual Review of Cell and Developmental Biology 16, 333–364.
Molecular recognition and response in pollen and pistil interactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXpvFyh&md5=264dcb3753424b0cf5c7bedd8c8e0290CAS | 11031240PubMed |

McWilliam JR, Gibbon CN (1981) Selection for seed retention in Phalaris aquatica L. In ‘Proceedings of the XIV International Grassland Congress’. pp. 269–272. (International Grassland Congress)

McWilliam JR, Schroeder HE, Marshall DR, Oram RN (1971) Genetic stability of Australian phalaris (Phalaris tuberosa L.) under domestication. Australian Journal of Agricultural Research 22, 895–908.
Genetic stability of Australian phalaris (Phalaris tuberosa L.) under domestication.Crossref | GoogleScholarGoogle Scholar |

Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157, 1819–1829.

Nagy I, Barth S, Mehenni-Ciz J, Abberton MT, Milbourne D (2013) A hybrid next generation transcript sequencing-based approach to identify allelic and homeolog-specific single nucleotide polymorphisms in allotetraploid white clover. BMC Genomics 14, 100
A hybrid next generation transcript sequencing-based approach to identify allelic and homeolog-specific single nucleotide polymorphisms in allotetraploid white clover.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVOrtLvF&md5=b124e3aa775f3b59279fd78b3e0cb6ccCAS | 23402685PubMed |

Oram RN, Culvenor RA (1994) Phalaris breeding in Australia. New Zealand Journal of Agricultural Research 37, 329–339.
Phalaris breeding in Australia.Crossref | GoogleScholarGoogle Scholar |

Oram RN, Schroeder HE (1992) Register of Australian herbage plant cultivars. 3(a) Phalaris aquatica L. cv. Holdfast. Australian Journal of Experimental Agriculture 32, 261–262.
Register of Australian herbage plant cultivars. 3(a) Phalaris aquatica L. cv. Holdfast.Crossref | GoogleScholarGoogle Scholar |

Oram RN, Ferreira V, Culvenor RA, Hopkins AA, Stewart A (2009) The first century of Phalaris aquatica L. cultivation and genetic improvement: a review. Crop & Pasture Science 60, 1–15.
The first century of Phalaris aquatica L. cultivation and genetic improvement: a review.Crossref | GoogleScholarGoogle Scholar |

Parisod C, Holderegger R, Brochman C (2010) Evolutionary consequences of autopolyploidy. New Phytologist 186, 5–17.
Evolutionary consequences of autopolyploidy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkvVOksbo%3D&md5=c00f90784317eb383b4acc2cba091f5aCAS | 20070540PubMed |

Pessino SC, Ortiz JPA, Hayward MD, Quarin CL (1999) The molecular genetics of gametophytic apomixis. Hereditas 130, 1–11.
The molecular genetics of gametophytic apomixis.Crossref | GoogleScholarGoogle Scholar |

Poland J, Endleman J, Dawson J, Rutkoski J, Wu S, Manes Y, Dreisigacker S, Crossa J, Sánchez-Villeda H, Sorrells M, Jannink J-L (2012) Genomic selection in wheat breeding using genotyping-by-sequencing. The Plant Genome 5, 103–113.
Genomic selection in wheat breeding using genotyping-by-sequencing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlvVaksrw%3D&md5=2fdf8805e6924f5237d31bbff33742bfCAS |

Ponting RC, Drayton MD, Cogan NOI, Dobrowolsk MP, Smith KF, Spangenberg GC, Forster JW (2007) SNP discovery, validation, haplotype structure and linkage disequilibrium in full-length herbage nutritive quality genes of perennial ryegrass (Lolium perenne L.). Molecular Genetics and Genomics 278, 585–597.
SNP discovery, validation, haplotype structure and linkage disequilibrium in full-length herbage nutritive quality genes of perennial ryegrass (Lolium perenne L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFGrsrfK&md5=a556e2d86e564d861a990154c2a4a4fbCAS | 17647019PubMed |

Putievsky E, Oram R, Malafant K (1980) Chromosomal differences between ecotypes of Phalaris aquatica L. Australian Journal of Botany 28, 645–647.
Chromosomal differences between ecotypes of Phalaris aquatica L.Crossref | GoogleScholarGoogle Scholar |

Quintanar A, Castroviejo S, Catalán P (2007) Phylogeny of the tribe Aveneae (Pooideae, Poaceae) inferred from plastid trnT-F and nuclear ITS sequences. American Journal of Botany 94, 1554–1569.
Phylogeny of the tribe Aveneae (Pooideae, Poaceae) inferred from plastid trnT-F and nuclear ITS sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFaksb3P&md5=c8029dba16c421ddca155736cfc4790aCAS | 21636521PubMed |

Ramsey J, Schemske DW (2002) Neopolyploidy in flowering plants. Annual Review of Ecology and Systematics 33, 589–639.
Neopolyploidy in flowering plants.Crossref | GoogleScholarGoogle Scholar |

Reed K, Clement S, Feely W, Clark B (2004) Improving tall fescue (Festuca arundinacea) for cool-season vigour. Australian Journal of Experimental Agriculture 44, 873–881.
Improving tall fescue (Festuca arundinacea) for cool-season vigour.Crossref | GoogleScholarGoogle Scholar |

Resende RMS, Casler MD, Resende MDV (2013a) Selection methods in forage breeding: A quantitative appraisal. Crop Science 53, 1925–1936.
Selection methods in forage breeding: A quantitative appraisal.Crossref | GoogleScholarGoogle Scholar |

Resende RMS, Casler MD, Resende MDV (2013b) Genomic selection in forage breeding: Accuracy and methods. Crop Science 54, 1–14.

Rowan DD, Gaynor DL (1986) Isolation of feeding deterrents against Argentine stem weevil from ryegrass infected with the endophyte Acremonium loliae. Journal of Chemical Ecology 12, 647–658.
Isolation of feeding deterrents against Argentine stem weevil from ryegrass infected with the endophyte Acremonium loliae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xit1Wqu7w%3D&md5=7e57072efe2e2bd7c8bda7527e4a807cCAS | 24306905PubMed |

Sartor ME, Quarin CL, Urbani MH, Espinoza F (2011) Ploidy levels and reproductive behaviour in natural populations of five Paspalum species. Plant Systematics and Evolution 293, 31–41.
Ploidy levels and reproductive behaviour in natural populations of five Paspalum species.Crossref | GoogleScholarGoogle Scholar |

Seal AG, Rees H (1982) The distribution of quantitative DNA changes associated with the evolution of diploid Poeae. Heredity 49, 179–190.
The distribution of quantitative DNA changes associated with the evolution of diploid Poeae.Crossref | GoogleScholarGoogle Scholar |

Sessitsch A, Howieson JG, Perret X, Antoun H, Martínex-Romero E (2002) Advances in Rhizobium research. Critical Reviews in Plant Sciences 21, 323–378.
Advances in Rhizobium research.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtlKltrc%3D&md5=117eaa2573590b63dcd4830ff6d5bb6dCAS |

Spielman M, Vinkenoog R, Scott RJ (2003) Genetic mechanisms of apomixis. Philosophical Transactions of the Royal Society of London Series B. 358, 1095–1103.
Genetic mechanisms of apomixis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtF2lsrk%3D&md5=fe572878a948e86210c67e162e6cf5e7CAS | 12831475PubMed |

Starling JI (1961) Cytogenetic study of interspecific hybrids between Phalaris arundinacea and P. tuberosa. Crop Science 1, 107–111.
Cytogenetic study of interspecific hybrids between Phalaris arundinacea and P. tuberosa.Crossref | GoogleScholarGoogle Scholar |

Stebbins GL (1971) ‘Chromosomal evolution in higher plants.’ (Edward Arnold: London)

Studer B, Jensen LB, Hentrup S, Brazauskas G, Kölliker R, Lübberstedt T (2008) Genetic characterisation of seed yield and fertility traits in perennial ryegrass (Lolium perenne L.). Theoretical and Applied Genetics 117, 781–791.
Genetic characterisation of seed yield and fertility traits in perennial ryegrass (Lolium perenne L.).Crossref | GoogleScholarGoogle Scholar | 18575835PubMed |

Thorogood D, Kaiser WJ, Jones JG, Armstead I (2002) Self-incompatibility in ryegrass 12. Genotyping and mapping the S and Z loci of Lolium perenne L. Heredity 88, 385–390.
Self-incompatibility in ryegrass 12. Genotyping and mapping the S and Z loci of Lolium perenne L.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XksFSrs78%3D&md5=f53505ccaa187813c2c815890598ea9aCAS | 11986876PubMed |

Van Treuren R, Bas N, Goosens P, Jansen J, van Soest LJM (2005) Genetic diversity in perennial ryegrass and white clover among old Dutch grasslands as compared to cultivars and nature reserves. Molecular Ecology 14, 39–52.
Genetic diversity in perennial ryegrass and white clover among old Dutch grasslands as compared to cultivars and nature reserves.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2M%2FhvVylsQ%3D%3D&md5=0882c9cdd8eca7b52330284251179361CAS | 15643949PubMed |

van Zijll de Jong E, Dobrowolski MP, Sandford A, Smith KF, Willocks MJ, Spangenberg GC, Forster JW (2008a) Detection and characterisation of novel fungal endophyte variation in cultivars of perennial ryegrass (Lolium perenne L.). Australian Journal of Agricultural Research 59, 214–221.
Detection and characterisation of novel fungal endophyte variation in cultivars of perennial ryegrass (Lolium perenne L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtVKjtLo%3D&md5=d2477c09f6c3c6767e8cbaa1053fe4d3CAS |

van Zijll de Jong E, Bannan NR, Dobrowolski MP, Stewart AV, Smith KF, Spangenberg GC, Forster JW (2008b) Global genetic diversity of the perennial ryegrass fungal endophyte Neotyphodium lolii. Crop Science 48, 1487–1501.
Global genetic diversity of the perennial ryegrass fungal endophyte Neotyphodium lolii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpslajsrw%3D&md5=b18a32a7b78b4c5c6fc22db3e9438f4bCAS |

Vogel JP, Pedersen JF (1993) Breeding systems for cross pollinated perennial grasses. Plant Breeding Reviews 11, 251–274.

Waldron BL, Robins JG, Peel MD, Jensen KB (2008) Predicted efficiency of spaced-plant selection to indirectly improve tall fescue sward yield and quality. Crop Science 48, 443–449.
Predicted efficiency of spaced-plant selection to indirectly improve tall fescue sward yield and quality.Crossref | GoogleScholarGoogle Scholar |

Wang J, Dobrowolski MP, Cogan NOI, Forster JW, Smith KF (2009) Assignment of individual genotypes to specific forage cultivars of perennial ryegrass (Lolium perenne L.) based on SSR markers. Crop Science 49, 49–58.
Assignment of individual genotypes to specific forage cultivars of perennial ryegrass (Lolium perenne L.) based on SSR markers.Crossref | GoogleScholarGoogle Scholar |

Wang J, Cogan NOI, Baillie RC, McFarlane N, Dupal MP, Smith KF, Forster JW (2011) Molecular genetic marker-based analysis of species-differentiated phenotypic characters in an interspecific ryegrass mapping population. Crop & Pasture Science 62, 892–902.
Molecular genetic marker-based analysis of species-differentiated phenotypic characters in an interspecific ryegrass mapping population.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFKrsbzE&md5=46d655efeb61dd78a096d2c02d09f3c5CAS |

Whitton J, Sears CJ, Baack EJ, Otto SP (2008) The dynamic nature of apomixes in the angiosperms. International Journal of Plant Sciences 169, 169–182.
The dynamic nature of apomixes in the angiosperms.Crossref | GoogleScholarGoogle Scholar |

Wilkinson HH, Siegel MR, Blankenship JD, Mallory AC, Bush LP, Schardl CL (2000) Contribution of fungal loline alkaloids to protection from aphids in a grass-endophyte mutualism. Molecular Plant-Microbe Interactions 13, 1027–1033.
Contribution of fungal loline alkaloids to protection from aphids in a grass-endophyte mutualism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXntVaku7c%3D&md5=e854a3793af8ff8b1d41252ec512aff1CAS | 11043464PubMed |

Williams W (1987) Adaptive variation. In ‘White clover’. pp. 299–231. (CAB International: Wallingford, UK)

Williams WM, Ellison NW, Ansari HA, Verry IM, Hussain SW (2012) Experimental evidence for the ancestry of allotetraploid Trifolium repens and creation of synthetic forms with value for plant breeding. BMC Plant Biology 12, 55
Experimental evidence for the ancestry of allotetraploid Trifolium repens and creation of synthetic forms with value for plant breeding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXot1WltLo%3D&md5=3b2d37e63b908d802a05877672a56823CAS | 22530692PubMed |

Xing Y, Frei U, Schejbel B, Asp T, Lübberstedt T (2007) Nucleotide diversity and linkage disequilibrium in 11 expressed resistance candidate genes in Lolium perenne. BMC Plant Biology 7, 43
Nucleotide diversity and linkage disequilibrium in 11 expressed resistance candidate genes in Lolium perenne.Crossref | GoogleScholarGoogle Scholar | 17683574PubMed |

Yates SG, Plattner RD, Garner GB (1985) Detection of ergopeptine alkaloids in endophyte infected, toxic Ky-31 tall fescue by mass spectrometry/mass spectrometry. Journal of Agricultural and Food Chemistry 33, 719–722.
Detection of ergopeptine alkaloids in endophyte infected, toxic Ky-31 tall fescue by mass spectrometry/mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXktlCmuro%3D&md5=b21dc50e981fc5dd4bccb479c893b30bCAS |