Breeding red clover for improved persistence in Chile: a review
Fernando Ortega A C , Leonardo Parra B and Andrés Quiroz BA Instituto de Investigaciones Agropecuarias, INIA Carillanca, km 10 camino Cajón-Vilcún s/n, Región de La Araucanía, Chile.
B Universidad de La Frontera, Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Temuco, Chile.
C Corresponding author. Email: fortega@inia.cl
Crop and Pasture Science 65(11) 1138-1146 https://doi.org/10.1071/CP13323
Submitted: 13 September 2013 Accepted: 6 February 2014 Published: 19 March 2014
Abstract
The main limitation of red clover (Trifolium pratense L.) worldwide including in Chile is the lack of persistence related to the high mortality of plants due to a complex of biotic and abiotic factors. We have demonstrated in various trials in Chile that red clover plant population is highly correlated with forage yield once the plant population has dropped to a certain level, from the second or third season onward, depending on the environment of evaluation. We have also found that in the south of Chile, among the biotic and abiotic factors affecting red clover survival, the curculionid Hylastinus obscurus (Marsham) is the main deleterious factor. However, because persistence is a complex trait, we have used a practical approach in our breeding program. We selected for general adaptability under field conditions and used a modified among and within half-family selection methodology, evaluating at the same time families as swards and spaced plants. This breeding methodology and strategy have yielded reasonable genetic gains since we started our breeding program in 1989 at INIA Carillanca, Chile. Since then, we have conducted five cycles of recurrent selection, and two cultivars have been released to replace the old cultivar, Quiñequeli INIA. These are Redqueli INIA and, more recently, Superqueli INIA. Depending on location and trial, average forage yield of the newest cultivar Superqueli INIA has been 23–69% higher than Quiñequeli INIA and 5–36% higher than Redqueli INIA; this difference increases in the third and fourth seasons. Superqueli INIA had four times the yield of Quiñequeli INIA in the fourth season. Therefore, the average realised genetic gain has been 0.4–2.6% per year, depending on location, showing the effectiveness of the breeding methodology and approach used.
Additional keywords: abiotic stress, breeding strategies, genetic improvement, plant breeding, plant–insect interactions, selection programs.
References
Aguilera A, Cisternas E, Gerding M, Norambuena H (1996) Plagas de las praderas. In ‘Praderas para Chile’. (Ed. I Ruiz) pp. 309–339. (Instituto de Investigaciones Agropecuarias: Santiago, Chile)Alarcón D, Ortega F, Perich F, Pardo F, Parra L, Quiroz A (2010) Relationship between radical infestation of Hylastinus obscurus (Marsham) and the yield of cultivars and experimental lines of red clover (Trifolium pratense L.). Revista de la ciencia del suelo y nutrición vegetal 10, 115–125.
| Relationship between radical infestation of Hylastinus obscurus (Marsham) and the yield of cultivars and experimental lines of red clover (Trifolium pratense L.).Crossref | GoogleScholarGoogle Scholar |
Avendaño R (1965) La variedad Quiñequeli y su evaluación con respecto a algunos tréboles rosados corrientes. Agricultura Técnica 25, 167–171.
Belzile L (1987) Effet de la présence de la fleole des prés sur la survie a l’hiver du trèfle rouge. Canadian Journal of Plant Science 67, 1101–1103.
| Effet de la présence de la fleole des prés sur la survie a l’hiver du trèfle rouge.Crossref | GoogleScholarGoogle Scholar |
Carrillo R, Mundaca N (1974) Biología de Hylastinus obscurus (Marsham) (Coleoptera: Scolytidae). Agricultura Técnica 24, 29–35.
Casler M, Brummer C (2008) Theoretical expected genetic gains for among-and-within-family selection methods in perennial forage crops. Crop Science 48, 890–902.
| Theoretical expected genetic gains for among-and-within-family selection methods in perennial forage crops.Crossref | GoogleScholarGoogle Scholar |
Choo TM, Connolly BJ, Langille JE, Drapeau R, Coulman B, Walton RB, Bubar JS, Goguen B, Madill J, Proulx JG, Fairey DT (1987) Marino red clover. Forage Notes, Canada, No. 31, pp. 64–65.
Conaghan P, Casler M (2011) A theoretical and practical analysis of the optimum breeding system for perennial ryegrass. Irish Journal of Agricultural and Food Research 50, 47–63.
Cosgrove GP, Brougham RW (1985) Grazing management influences on seasonality and performance of ryegrass and red clover in a mixture. In ‘Proceedings of the NZ Grassland Association’ Vol. 46, 71–76. (NZ Grassland Association Inc.: Mosgiel, New Zealand)
Cuevas E, Balocchi O (1983) ‘Producción de forraje.’ Serie B7. (Instituto de Producción Animal, Universidad Austral de Chile: Valdivia, Chile)
Ford JL, Barrett BA (2011) Improving red clover persistence under grazing. In ‘Proceedings of the NZ Grassland Association’ Vol. 73, pp. 119–124. (NZ Grassland Association Inc.: Mosgiel, New Zealand)
Frame J (1990) The role of red clover in United Kingdom pastures. In ‘Outlook on agriculture’. Vol. 19(1), pp. 49–55. (The West of Scotland College: Glasgow, Scotland)
Frame J, Harkess R, Hunt I (1976) The influence of date of sowing and seed rate on the production of pure sown red clover. Journal of the British Grassland Society 31, 117–122.
| The influence of date of sowing and seed rate on the production of pure sown red clover.Crossref | GoogleScholarGoogle Scholar |
Graham JH, Newton PC (1959) Relationship between root feeding insects and incidence of crown and root rot in red clover. Plant Disease Reporter 43, 1114–1116.
Hejduk S, Knot P (2010) Effect of provenance and ploidity of red clover varieties on productivity, persistence and growth pattern in mixture with grasses. Plant, Soil and Environment 56, 111–119.
Herrmann D, Boller B, Studer B, Widmer F, Kölliger R (2007) Characterization of persistence in red clover (Trifolium pratense L.). In ‘Proceedings of the XXVII EUCARPIA Symposium: Improvement of Fodder Crops and Amenity Grasses’ Copenhagen. pp. 71–76. (EUCARPIA)
Jewis OR (1993) Shoot development and number. In ‘Sward measurement handbook’ 2nd edn (Eds A Davies, RD Baker, SA Grant and AS Laidlaw) pp. 99–120. (British Grassland Society: Kenilworth, UK)
Lewis GC, Heard AJ, Gutteridge RA, Plumb RT, Gibson RW (1985) The effects of mixing italian ryegrass (Lolium multiflorum) with perennial ryegrass (L. perenne) or red clover (Trifolium pratense) on the incidence of viruses. Annals of Applied Biology 106, 483–488.
| The effects of mixing italian ryegrass (Lolium multiflorum) with perennial ryegrass (L. perenne) or red clover (Trifolium pratense) on the incidence of viruses.Crossref | GoogleScholarGoogle Scholar |
Manosalva L, Pardo F, Perich F, Mutis A, Parra L, Ortega F, Isaacs R, Quiroz A (2011) Behavioral responses of clover root borer to long-chain fatty acids from young red clover (Trifolium pratense) roots. Environmental Entomology 40, 399–404.
| Behavioral responses of clover root borer to long-chain fatty acids from young red clover (Trifolium pratense) roots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVGgtrvK&md5=c7a28d8d38c3b71578c0029ed3691f44CAS |
Marshall AH, Lowe M, Vale J (2011) Improved persistence of red clover (Trifolium pretense L.) varieties in mixed swards. In ‘Grassland in a changing world’. Grassland Science in Europe, Vol. 16, pp. 73–75. (European Grassland Federation)
Ortega F (1996) Variation in mortality, yield and persistence of red clover (Trifolium pratense L.). PhD thesis. University of Wales, Aberystwyth, UK.
Ortega F, Levío J (2011a) SuperQueli INIA, Nuevo Cultivar Chileno de Trébol Rosado (Trifolium pratense L.). I- Origen y descripción morfológica. In ‘Libro de resúmenes del XXXVI Congreso Anual de la Sociedad Chilena de Producción Animal (SOCHIPA)’. Punta Arenas, Chile. pp. 195–196. (SOCHIPA A.G.)
Ortega F, Levío J (2011b) SuperQueli INIA, Nuevo Cultivar Chileno de Trébol Rosado (Trifolium pratense L.). II. Comportamiento Agronómico en La Araucanía, Chile. In ‘Libro de resúmenes del XXXVI Congreso anual de la Sociedad Chilena de Producción Animal (SOCHIPA)’. Punta Arenas, Chile. pp. 193–194. (SOCHIPA A.G.)
Ortega F, Galdames R, Aguilera A (1997) Fitomejoramiento de trébol rosado (Trifolium pratense L.) II- Comportamiento de una prueba de progenies y sus relaciones con el bloque de policruzamiento. Agricultura Técnica 57, 79–86.
Ortega F, Galdames R, Aguilera A, Romero O, Ruiz I, Soto P, Torres A (2003) Redqueli-INIA, Nuevo cultivar de trébol rosado sintético. Agricultura Técnica 63, 207–211.
Ortega F, Galdames R, Soto P, Teuber N, Torres A, Levío J (2012a) Avances en mejoramiento genético de trébol rosado (Trifolium pratense L.) en Chile. In ‘63° Congreso Agronómico, Contribuyendo a la Sustentabilidad Alimentaria’. Temuco, Chile, 322.
Ortega F, Quiroz A, Parra L, Levío J (2012b) Relaciones entre población de plantas, rendimiento de forraje y persistencia productiva en trébol rosado (Trifolium pratense L.). In ‘63° Congreso Agronómico, Contribuyendo a la Sustentabilidad Alimentaria’. Temuco, Chile, 325.
Palma R, Mutis A, Manosalva L, Ceballos R, Quiroz A (2012) Behavioral and electrophysiological responses of Hylastinus obscurus to volatiles released from the roots of Trifolium pratense (L.). Journal of Soil Science and Nutrition 12, 183–193.
Palma R, Mutis A, Isaacs R, Quiroz A (2013) Type and distribution of sensilla in the antennae of the red clover root borer, Hylastinus obscurus. Journal of Insect Science 13, 1–10.
Parra L, Mutis A, Ortega F, Quiroz A (2013) Field response of Hylastinus obscurus Marsham (Coleoptera: Curculionidae) to E-2-hexenal and limonene, two host-derived semiochemicals. Ciencia e Investigación Agraria 40, 645–650.
Quiroz A, Ortega F, Ramirez C, Wadhams L, Pinilla K (2005) Response of the beetle Hylastinus obscurus Marsham (Coleoptera: Scolytidae) to red clover (Trifolium pratense L.) volatiles in a laboratory. Environmental Entomology 34, 690–695.
| Response of the beetle Hylastinus obscurus Marsham (Coleoptera: Scolytidae) to red clover (Trifolium pratense L.) volatiles in a laboratory.Crossref | GoogleScholarGoogle Scholar |
Rhodes I, Ortega F (1996) Progress in Forage Legume Breeding. In ‘Legumes in sustainable farming system’. (Ed. D Younie) pp. 62–71. British Grassland Society, Occasional Symposium No. 30, Aberdeen, Scotland. : (British Grassland Society: Kenilworth, UK)
Rhodes I, Ortega F (1997) Plant breeding achievements and prospects, Forage Legumes. In ‘Seeds of Progress. (Ed. JR Weddell) pp. 15–27. British Grassland Society, Occasional Symposium No. 31, Aberdeen, Scotland. (British Grassland Society: Kenilworth, UK)
SAS Institute (2013) ‘SAS 9.3.’ (SAS Institute: Cary, NC, USA)
Sheldrick RD, Lavander RH, Tewson VJ (1986) The effects of frequency of defoliation, date of first cut and heading date of a perennial ryegrass companion on the yield, quality and persistence of diploid and tetraploid broad red clover. Grass and Forage Science 41, 137–149.
| The effects of frequency of defoliation, date of first cut and heading date of a perennial ryegrass companion on the yield, quality and persistence of diploid and tetraploid broad red clover.Crossref | GoogleScholarGoogle Scholar |
Skipp RA, Christensen MJ (1990) Selection for persistence in red clover: influence of root disease and stem nematode. New Zealand Journal of Agricultural Research 33, 319–333.
| Selection for persistence in red clover: influence of root disease and stem nematode.Crossref | GoogleScholarGoogle Scholar |
Steiner JJ, Alderman SC (2003) Red clover seed production: IV. Effect and economics of soil pH adjusted by lime application. Crop Science 43, 624–630.
| Red clover seed production: IV. Effect and economics of soil pH adjusted by lime application.Crossref | GoogleScholarGoogle Scholar |
Tapia S, Pardo F, Perich F, Quiroz A (2005) Clover root borer Hylastinus obscurus (Marsham) (Coleoptera: Scolytidae) has no preference for volatiles from root extracts of disease infected red clover. Acta Agriculturae Scandinavica, Sect. B Soil & Plant Science 55, 158–160.
Tapia T, Perich F, Pardo F, Palma G, Quiroz A (2007) Identification of volatiles from differently aged red clover (Trifolium pratense) root extracts and behavioural responses of clover root borer (Hylastinus obscurus) (Marsham) (Coleoptera: Scolytidae) to them. Biochemical Systematics and Ecology 35, 61–67.
| Identification of volatiles from differently aged red clover (Trifolium pratense) root extracts and behavioural responses of clover root borer (Hylastinus obscurus) (Marsham) (Coleoptera: Scolytidae) to them.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1KgurnM&md5=98d6ede7eeeb1034b127316ff8bd9430CAS |
Taylor NL (1987) Forage legumes. In ‘Principles of cultivar development. II. Crop species’. (Ed. WR Fehr) pp. 209–248. (Macmillan Publishing Company: New York)
Taylor NL, Quesenberry KH (1996) ‘Red clover science’. Current Plant Science and Biology in Agriculture Vol. 28. (Springer: Berlin, Heidelberg)
Ussher G (1986) Case study information reflecting farmer use of Pawera red clover in northern northland. In ‘Proceedings of the NZ Grassland Association’ Vol. 47, pp. 179–182. (NZ Grassland Association Inc.: Mosgiel, New Zealand)
Zeiders KE, Graham JH, Sprague VG, Wilkinson SR (1971) Internal breakdown of red clover (Trifolium pratense L.) in relation to environmental, cultural, and genetic factors. Agricultural Research Service, Plat Science Research Division, US Department of Agriculture 34–126. 24 p.