Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

Candidate gene-based association genetics analysis of herbage quality traits in perennial ryegrass (Lolium perenne L.)

L. W. Pembleton A D E F , J. Wang B C D F , N. O. I. Cogan A C D , J. E. Pryce A D , G. Ye A C , C. K. Bandaranayake B C , M. L. Hand A C D , R. C. Baillie A C D , M. C. Drayton A C D , K. Lawless A C , S. Erb B C , M. P. Dobrowolski B C , T. I. Sawbridge A C D E , G. C. Spangenberg A C D E , K. F. Smith B C E and J. W. Forster A C D E G
+ Author Affiliations
- Author Affiliations

A Department of Environment and Primary Industries, Biosciences Research Division, AgriBio, The Centre for AgriBioscience, 5 Ring Road, Bundoora, Vic. 3083, Australia.

B Department of Environment and Primary Industries, Biosciences Research Division, Hamilton Centre, Mount Napier Road, Hamilton, Vic. 3300, Australia.

C Molecular Plant Breeding Cooperative Research Centre, Victorian AgriBiosciences Centre, La Trobe University Research and Development Park, Bundoora, Vic. 3083, Australia.

D Dairy Futures Cooperative Research Centre, AgriBio, The Centre for AgriBioscience, 5 Ring Road, Bundoora, Vic. 3083, Australia.

E La Trobe University, Bundoora, Vic. 3086, Australia.

F Contributed equally to this work.

G Corresponding author. Email: john.forster@depi.vic.gov.au

Crop and Pasture Science 64(3) 244-253 https://doi.org/10.1071/CP12392
Submitted: 21 November 2012  Accepted: 7 June 2013   Published: 24 July 2013

Abstract

Due to the complex genetic architecture of perennial ryegrass, based on an obligate outbreeding reproductive habit, association-mapping approaches to genetic dissection offer the potential for effective identification of genetic marker–trait linkages. Associations with genes for agronomic characters, such as components of herbage nutritive quality, may then be utilised for accelerated cultivar improvement using advanced molecular breeding practices. The objective of the present study was to evaluate the presence of such associations for a broad range of candidate genes involved in pathways of cell wall biosynthesis and carbohydrate metabolism. An association-mapping panel composed from a broad range of non-domesticated and varietal sources was assembled and assessed for genome-wide sequence polymorphism. Removal of significant population structure obtained a diverse meta-population (220 genotypes) suitable for association studies. The meta-population was established with replication as a spaced-plant field trial. All plants were genotyped with a cohort of candidate gene-derived single nucleotide polymorphism (SNP) markers. Herbage samples were harvested at both vegetative and reproductive stages and were measured for a range of herbage quality traits using near infrared reflectance spectroscopy. Significant associations were identified for ~50% of the genes, accounting for small but significant components of phenotypic variance. The identities of genes with associated SNPs were largely consistent with detailed knowledge of ryegrass biology, and they are interpreted in terms of known biochemical and physiological processes. Magnitudes of effect of observed marker–trait gene association were small, indicating that future activities should focus on genome-wide association studies in order to identify the majority of causal mutations for complex traits such as forage quality.

Additional keywords: cultivar, digestibility, fructan, lignin, NIRS, single nucleotide polymorphism.


References

Abdurakhmonov IY, Abdurakhmonov A (2008) Application of association mapping to understanding the genetic diversity of plant germplasm resources. International Journal of Plant Genomics 2008, 574927
Application of association mapping to understanding the genetic diversity of plant germplasm resources.Crossref | GoogleScholarGoogle Scholar | 18551188PubMed |

Auzanneau J, Huyghe C, Julier B, Barre P (2007) Linkage disequilibrium in synthetic varieties of perennial ryegrass. Theoretical and Applied Genetics 115, 837–847.
Linkage disequilibrium in synthetic varieties of perennial ryegrass.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2snnsVGrsQ%3D%3D&md5=e0d98145b2a475f9b0bab7bb6aaefadaCAS | 17701396PubMed |

Beavis WD (1994) The power and deceit of QTL experiments: lessons from comparative QTL studies. In ‘Proceedings of the Forty-Ninth Annual Corn and Sorghum Industry Research Conference’. pp. 250–266. (American Seed Trade Association: Washington, DC)

Bowman DC, Paul JL (1988) Uptake and assimilation of NO3− and NH4+ by nitrogen-deficient perennial ryegrass turf. Plant Physiology 88, 1303–1309.
Uptake and assimilation of NO3 and NH4+ by nitrogen-deficient perennial ryegrass turf.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXnt1GktA%3D%3D&md5=08c0f2454cad1a1b2830abc5a27069beCAS | 16666459PubMed |

Brazauskas G, Pašakiskiené I, Asp T, Lübberstedt T (2010) Nucleotide diversity and linkage disequilibrium in five Lolium perenne genes with putative role in shoot morphology. Plant Science 179, 194–201.
Nucleotide diversity and linkage disequilibrium in five Lolium perenne genes with putative role in shoot morphology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosVyqu7c%3D&md5=5eafb9ee1405c97421b9827e9c63e9d5CAS |

Chalmers J, Lidgett A, Johnson X, Jennings K, Cummings N, Forster J, Spangenberg G (2005) Molecular genetics of fructan metabolism in temperate grasses. Plant Biotechnology Journal 3, 459–474.
Molecular genetics of fructan metabolism in temperate grasses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVKltbvP&md5=1e7ef48212d31178014a0160b436cad9CAS | 17173633PubMed |

Cogan NOI, Smith KF, Yamada T, Francki MG, Vecchies AC, Jones ES, Spangenberg GC, Forster JW (2005) QTL analysis and comparative genomics of herbage quality traits in perennial ryegrass (Lolium perenne L.). Theoretical and Applied Genetics 110, 364–380.
QTL analysis and comparative genomics of herbage quality traits in perennial ryegrass (Lolium perenne L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntF2ksA%3D%3D&md5=bf1f896a0c0eeeda78d70de5da51d927CAS |

Cogan NOI, Ponting RC, Vecchies AC, Drayton MC, George J, Dobrowolski MP, Sawbridge TI, Spangenberg GC, Smith KF, Forster JW (2006) Gene-associated single nucleotide polymorphism (SNP) discovery in perennial ryegrass (Lolium perenne L.). Molecular Genetics and Genomics 276, 101–112.
Gene-associated single nucleotide polymorphism (SNP) discovery in perennial ryegrass (Lolium perenne L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntVWltrw%3D&md5=5f1e483b61a4e59d987e4d800b462835CAS |

Cogan NOI, Baillie RC, Hand ML, Drayton MC, Tian P, Webster T, Chapman R, Spangenberg GC, Forster JW (2010a) Accelerated SNP discovery in perennial ryegrass based on pooled amplicon resequencing. In ‘Sixth International Symposium on Molecular Breeding of Forage and Turf—2010’. Buenos Aires, Argentina. P-4. Abstracts, pp. 47–48. (INTA: Buenos Aires)

Cogan NOI, Hand ML, Sawbridge TI, Baillie RC, Forster JW (2010b) Comparative genomics in the grass family Poaceae for structured genome-wide SNP discovery in perennial ryegrass (Lolium perenne L.). In ‘Sixth International Symposium on Molecular Breeding of Forage and Turf—2010’. Buenos Aires, Argentina. P-5. Abstracts, pp. 49–50. (INTA: Buenos Aires)

Dracatos PM, Cogan NOI, Dobrowolski MP, Sawbridge TI, Spangenberg GC, Smith KF, Forster JW (2008) Discovery and genetic mapping of single nucleotide polymorphisms in candidate genes for pathogen defence response in perennial ryegrass (Lolium perenne L.). Theoretical and Applied Genetics 117, 203–219.
Discovery and genetic mapping of single nucleotide polymorphisms in candidate genes for pathogen defence response in perennial ryegrass (Lolium perenne L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnslKltLY%3D&md5=f0f4413d3cc7b3b822fab1cd44fcadb0CAS | 18446316PubMed |

Dracatos PM, Cogan NOI, Sawbridge TI, Gendall AR, Smith KF, Spangenberg GC, Forster JW (2009) Molecular characterisation and genetic mapping of candidate genes for qualitative disease resistance in perennial ryegrass (Lolium perenne L.). BMC Plant Biology 9, 62
Molecular characterisation and genetic mapping of candidate genes for qualitative disease resistance in perennial ryegrass (Lolium perenne L.).Crossref | GoogleScholarGoogle Scholar | 19450286PubMed |

Dracatos PM, Cogan NOI, Keane PJ, Smith KF, Forster JW (2010) Biology and genetics of crown rust disease in ryegrasses. Crop Science 50, 1605–1624.
Biology and genetics of crown rust disease in ryegrasses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Omur7O&md5=5a5d93eb73eefa399d6001c0e682d51eCAS |

Dumsday JL, Smith KF, Forster JW, Jones ES (2003) SSR-based genetic linkage analysis of resistance to crown rust (Puccinia coronata Corda f. sp. lolii) in perennial ryegrass (Lolium perenne L.). Plant Pathology 52, 628–637.
SSR-based genetic linkage analysis of resistance to crown rust (Puccinia coronata Corda f. sp. lolii) in perennial ryegrass (Lolium perenne L.).Crossref | GoogleScholarGoogle Scholar |

Faville M, Vecchies AC, Schreiber M, Drayton MC, Hughes LJ, Jones ES, Guthridge KM, Smith KF, Sawbridge T, Spangenberg GC, Bryan GT, Forster JW (2004) Functionally-associated molecular genetic marker map construction in perennial ryegrass (Lolium perenne L.). Theoretical and Applied Genetics 110, 12–32.
Functionally-associated molecular genetic marker map construction in perennial ryegrass (Lolium perenne L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXotVGrsA%3D%3D&md5=ebc8b8289a395387e7491d7a2adf50d7CAS | 15526086PubMed |

Fiil A, Lenk I, Petersen K, Jensen CS, Nielsen KK, Schejbel B, Andersen JR, Lübberstedt T (2011) Nucleotide diversity and linkage disequilibrium of nine genes with putative effects on flowering time in perennial ryegrass (Lolium perenne L.). Plant Science 180, 228–237.
Nucleotide diversity and linkage disequilibrium of nine genes with putative effects on flowering time in perennial ryegrass (Lolium perenne L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1agtL3N&md5=df4a715fd57843f3572836db18ece539CAS | 21421365PubMed |

Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Annual Review of Plant Biology 54, 357–374.
Structure of linkage disequilibrium in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntFSgu7c%3D&md5=ad3d095cd6ea478ef719ecb769d27f67CAS | 14502995PubMed |

Forster JW, Cogan NOI, Dobrowolski MP, van Zijll de Jong E, Spangenberg GC, Smith KF (2008a) Molecular breeding technologies for forage and turf plants. In ‘Principles and practices of plant genomics. Vol. 2: Molecular breeding’. (Eds C Kole, A Abbott) pp. 395–430. (Science Publishers, Inc.: Enfield, NH)

Forster JW, Cogan NOI, Dobrowolski MP, Francki MG, Spangenberg GC, Smith KF (2008b) Functionally-associated molecular genetic markers for temperate pasture plant improvement. In ‘Plant genotyping II: SNP technology’. (Ed. RJ Henry) pp. 154–187. (CABI Press: Wallingford, UK)

Foster CA (1971) Interpopulational and intervarietal hybridization in Lolium perenne breeding: heterosis under non-competitive conditions. The Journal of Agricultural Science 76, 107–130.
Interpopulational and intervarietal hybridization in Lolium perenne breeding: heterosis under non-competitive conditions.Crossref | GoogleScholarGoogle Scholar |

Foster CA (1973) Interpopulational and intervarietal F1 hybrids in Lolium perenne: performance in field sward conditions. The Journal of Agricultural Science 80, 463–477.
Interpopulational and intervarietal F1 hybrids in Lolium perenne: performance in field sward conditions.Crossref | GoogleScholarGoogle Scholar |

Freedman ML, Reich D, Penney KL, McDonald GJ, Mignault AA, Patterson N, Gabriel SB, Topol EJ, Smoller JW, Pato CN, Pato MT, Petryshen TL, Kolonel LN, Lander ES, Sklar P, Henderson B, Hirschhorn JN, Altshuler D (2004) Assessing the impact of population stratification on genetic association studies. Nature Genetics 36, 388–393.
Assessing the impact of population stratification on genetic association studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXis1aht7s%3D&md5=8ed7a91b4f22542ecbec5ff8ce329f91CAS | 15052270PubMed |

Fulkerson WJ, Donaghy DJ (2001) Plant-soluble carbohydrate reserves and senescence—key criteria for developing an effective grazing management system for ryegrass-based pastures: a review. Australian Journal of Experimental Agriculture 41, 261–275.
Plant-soluble carbohydrate reserves and senescence—key criteria for developing an effective grazing management system for ryegrass-based pastures: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjslKltbo%3D&md5=0c58e4ef8a6636b5b190686af8474793CAS |

Gilmour AR, Gogel BJ, Cullis BR, Thompson R (2009) ‘ASReml User Guide Release 3.0.’ (VSN International Ltd: Hemel Hempstead, UK)

Griffith SM (1992) Changes in post-anthesis assimilates in stem and spike components of Italian ryegrass (Lolium multiflorum Lam.). I. Water soluble carbohydrates. Annals of Botany 69, 243–248.

Guillet-Claude C, Birolleau-Touchard C, Manicacci D, Fourmann M, Barraud S, Carret V, Martinant JP, Barriere Y (2004a) Genetic diversity associated with variation in silage corn digestibility for three O-methyltransferase genes involved in lignin biosynthesis. Theoretical and Applied Genetics 110, 126–135.
Genetic diversity associated with variation in silage corn digestibility for three O-methyltransferase genes involved in lignin biosynthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXotVGrtg%3D%3D&md5=2afd2909820a065e4647c5655bb36bdcCAS | 15536523PubMed |

Guillet-Claude C, Birolleau-Touchard C, Manicacci D, Rogowsky PM, Rigau J, Murigneux A, Martinant JP, Barriere Y (2004b) Nucleotide diversity of the ZmPox3 maize peroxidase gene: relationships between a MITE insertion in exon 2 and variation in forage maize digestibility. BMC Genetics 5, 19
Nucleotide diversity of the ZmPox3 maize peroxidase gene: relationships between a MITE insertion in exon 2 and variation in forage maize digestibility.Crossref | GoogleScholarGoogle Scholar | 15257762PubMed |

Guthridge KM, Dupal MP, Kölliker R, Jones ES, Smith KF, Forster JW (2001) AFLP analysis of genetic diversity within and between populations of perennial ryegrass (Lolium perenne L.). Euphytica 122, 191–201.
AFLP analysis of genetic diversity within and between populations of perennial ryegrass (Lolium perenne L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xltlahsg%3D%3D&md5=fd8a5f09115d1cafc25cc726c22b151cCAS |

Hardy OJ, Vekemans X (2002) Spagedi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Molecular Ecology Notes 2, 618–620.
Spagedi: a versatile computer program to analyse spatial genetic structure at the individual or population levels.Crossref | GoogleScholarGoogle Scholar |

Huang X, Feng Q, Qian Q, Zhao Q, Wang L, Wang A, Guan J, Fan D, Weng Q, Huang T, Dong G, Sang T, Han B (2009) High-throughput genotyping by whole-genome sequencing. Genome Research 19, 1068–1076.
High-throughput genotyping by whole-genome sequencing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntFGrsLc%3D&md5=362f543d4269c0f75f7d0f91523b8dedCAS | 19420380PubMed |

Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z, Li M, Fan D, Guo Y, Wang A, Wang L, Deng L, Li W, Lu Y, Weng Q, Liu K, Huang T, Zhou T, Jing Y, Li W, Lin Z, Buckler ES, Qian Q, Zhang QF, Li J, Han B (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nature Genetics 42, 961–967.
Genome-wide association studies of 14 agronomic traits in rice landraces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlahu7rE&md5=bed4542627c8b12bbb897ec4af6820b7CAS | 20972439PubMed |

Humphreys MO (1989) Water-soluble carbohydrates in perennial ryegrass breeding. Grass and Forage Science 44, 423–430.
Water-soluble carbohydrates in perennial ryegrass breeding.Crossref | GoogleScholarGoogle Scholar |

Jones ES, Dupal MP, Kölliker R, Drayton MC, Forster JW (2001) Development and characterisation of simple sequence repeat (SSR) markers for perennial ryegrass (Lolium perenne L.). Theoretical and Applied Genetics 102, 405–415.
Development and characterisation of simple sequence repeat (SSR) markers for perennial ryegrass (Lolium perenne L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXisVynsb0%3D&md5=9ffe752b9ff195dbbb2ca69ae8e0a580CAS |

Krutovsky KV, Neale DB (2005) Nucleotide diversity and linkage disequilibrium in cold-hardiness and wood quality-related candidate genes in Douglas fir. Genetics 171, 2029–2041.
Nucleotide diversity and linkage disequilibrium in cold-hardiness and wood quality-related candidate genes in Douglas fir.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XovVyjsA%3D%3D&md5=21aa94726fd930b988e5faa7100a10b1CAS | 16157674PubMed |

Li X, Brummer EC (2012) Applied genetics and genomics in alfalfa breeding. Agronomy 2, 40–61.
Applied genetics and genomics in alfalfa breeding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVSjtb%2FP&md5=b7474bfbc04a0e468f17ac37b24edd71CAS |

Lidgett A, Jennings K, Johnson X, Guthridge K, Jones E, Spangenberg G (2002) Isolation and characterisation of fructosyltransferase gene from perennial ryegrass (Lolium perenne). Journal of Plant Physiology 159, 1037–1043.
Isolation and characterisation of fructosyltransferase gene from perennial ryegrass (Lolium perenne).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XosFyntb0%3D&md5=bd289bec06aa16be98d5d3b23c64370aCAS |

Lynch D, Lidgett A, McInnes R, Huxley H, Jones E, Mahoney N, Spangenberg G (2002) Isolation and characterisation of three cinnamyl alcohol dehydrogenase homologue cDNAs from perennial ryegrass (Lolium perenne L.). Journal of Plant Physiology 159, 653–660.
Isolation and characterisation of three cinnamyl alcohol dehydrogenase homologue cDNAs from perennial ryegrass (Lolium perenne L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlvVCrurY%3D&md5=fe8630d44f33abdd989a2b0129035826CAS |

Mackay I, Powell W (2007) Methods for linkage disequilibrium mapping in crops. Trends in Plant Science 12, 57–63.
Methods for linkage disequilibrium mapping in crops.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvVyrsrw%3D&md5=3b1006f68e597b9f800d1733d24c58bcCAS | 17224302PubMed |

Marchini J, Cardon LR, Phillips MS, Donnelly P (2004) The effects of human population structure on large genetic association studies. Nature Genetics 36, 512–517.
The effects of human population structure on large genetic association studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsFSntro%3D&md5=651ffadbc3b0bda7b8e94fb1754a6214CAS | 15052271PubMed |

McInnes R, Lidgett A, Lynch D, Huxley H, Jones E, Mahoney N, Spangenberg G (2002) Isolation and characterisation of a cinnamoyl-CoA reductase gene from perennial ryegrass (Lolium perenne). Journal of Plant Physiology 159, 415–422.
Isolation and characterisation of a cinnamoyl-CoA reductase gene from perennial ryegrass (Lolium perenne).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkslWls7s%3D&md5=6f5dcce17306cfba98558969effce390CAS |

Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157, 1819–1829.

Neale DB, Savolainen O (2004) Association genetics of complex traits in conifers. Trends in Plant Science 9, 325–330.
Association genetics of complex traits in conifers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsVSnur8%3D&md5=26398902105e0c42e3bc571cd80f4620CAS | 15231277PubMed |

Payne RW, Harding SA, Murray DA, Soutar DM, Baird DB, Glaser AI, Channing IC, Welham SJ, Gilmour AR, Thompson R, Webster R (2010) ‘Genstat Release 13.’ (VSN International Ltd: Hemel Hempstead, UK)

Pearson A, Cogan NOI, Baillie RC, Hand ML, Shinozuka H, Erb S, Wilkinson T, Kearney GA, Gendall AR, Smith KF, Forster JW (2011) Identification of QTLs for morphological traits influencing waterlogging tolerance in perennial ryegrass (Lolium perenne L.). Theoretical and Applied Genetics 122, 609–622.
Identification of QTLs for morphological traits influencing waterlogging tolerance in perennial ryegrass (Lolium perenne L.).Crossref | GoogleScholarGoogle Scholar | 20981402PubMed |

Ponting RC, Drayton MD, Cogan NOI, Dobrowolsk MP, Smith KF, Spangenberg GC, Forster JW (2007) SNP discovery, validation, haplotype structure and linkage disequilibrium in full-length herbage nutritive quality genes of perennial ryegrass (Lolium perenne L.). Molecular Genetics and Genomics 278, 585–597.
SNP discovery, validation, haplotype structure and linkage disequilibrium in full-length herbage nutritive quality genes of perennial ryegrass (Lolium perenne L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFGrsrfK&md5=d27970489aebc01859a5d68627f94e9fCAS | 17647019PubMed |

Posselt UK (1993) Hybrid production in Lolium perenne based on incompatibility. Euphytica 71, 29–33.
Hybrid production in Lolium perenne based on incompatibility.Crossref | GoogleScholarGoogle Scholar |

Pritchard JK, Rosenberg NA (1999) Use of unlinked genetic markers to detect population stratification in association studies. American Journal of Human Genetics 65, 220–228.
Use of unlinked genetic markers to detect population stratification in association studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltlOnsrc%3D&md5=21ce107f7268dd8ade7e182756a4fe42CAS | 10364535PubMed |

Pritchard JK, Stephens M, Rosenberg NA, Donnelly P (2000) Association mapping in structured populations. American Journal of Human Genetics 67, 170–181.
Association mapping in structured populations.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3czptVWnuw%3D%3D&md5=b3a8f8eda023766a6e87f2faa67c1e58CAS | 10827107PubMed |

Sawbridge T, Ong E-K, Binnion C, Emmerling M, McInnes R, Meath K, Nguyen N, Nunan K, O’Neill M, O’Toole F, Rhodes C, Simmonds J, Tian P, Wearne K, Webster T, Winkworth A, Spangenberg G (2003) Generation and analysis of expressed sequence tags in perennial ryegrass (Lolium perenne L.). Plant Science 165, 1089–1100.
Generation and analysis of expressed sequence tags in perennial ryegrass (Lolium perenne L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsVagt74%3D&md5=47d7afbf9f0b3b70575de2481d49982fCAS |

Shinozuka H, Cogan NOI, Spangenberg GC, Forster JW (2012) Quantitative Trait Locus (QTL) meta-analysis and comparative genomics for candidate gene prediction in perennial ryegrass (Lolium perenne L.). BMC Genetics 13, 101
Quantitative Trait Locus (QTL) meta-analysis and comparative genomics for candidate gene prediction in perennial ryegrass (Lolium perenne L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmt1Gktrg%3D&md5=f0ee8bda31b31dfd1be35ba97a16c93eCAS | 23137269PubMed |

Skøt L, Humphreys MO, Armstead I, Heywood S, Skøt KP, Sanderson R, Thomas ID, Chorlton KH, Sackville Hamilton NR (2005) An association mapping approach to identify flowering time genes in natural populations of Lolium perenne (L.). Molecular Breeding 15, 233–245.
An association mapping approach to identify flowering time genes in natural populations of Lolium perenne (L.).Crossref | GoogleScholarGoogle Scholar |

Skøt L, Humphreys J, Humphreys MO, Thorogood D, Gallagher J, Sanderson R, Armstead IP, Thomas ID (2007) Association of candidate genes with flowering time and water-soluble carbohydrate content in Lolium perenne L. Genetics 177, 535–547.
Association of candidate genes with flowering time and water-soluble carbohydrate content in Lolium perenne L.Crossref | GoogleScholarGoogle Scholar | 17660575PubMed |

Smith KF, Culvenor RA, Humphreys MO, Simpson RJ (2002) Growth and carbon partitioning in perennial ryegrass (Lolium perenne) cultivars selected for high water-soluble carbohydrate concentrations. The Journal of Agricultural Science 138, 375–385.
Growth and carbon partitioning in perennial ryegrass (Lolium perenne) cultivars selected for high water-soluble carbohydrate concentrations.Crossref | GoogleScholarGoogle Scholar |

Sorrells ME, Wilson WA (1997) Direct classification and selection of superior alleles for crop improvement. Crop Science 37, 691–697.
Direct classification and selection of superior alleles for crop improvement.Crossref | GoogleScholarGoogle Scholar |

Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nature Genetics 28, 286–289.
Dwarf8 polymorphisms associate with variation in flowering time.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltFSmurc%3D&md5=53babb43703bd73d7f27c1d5eb3dc869CAS | 11431702PubMed |

Thumma BR, Nolan MF, Evans R, Moran GF (2005) Polymorphisms in Cinnamoyl CoA Reductase (CCR) are associated with variation in microfibril angle in Eucalyptus spp. Genetics 171, 1257–1265.
Polymorphisms in Cinnamoyl CoA Reductase (CCR) are associated with variation in microfibril angle in Eucalyptus spp.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjs1Kruw%3D%3D&md5=8b47ef10fa0ae122034402b6dfc114ecCAS | 16085705PubMed |

Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q, Flint-Garcia S, Rocheford TR, McMullen MD, Holland JB, Buckler ES (2011) Genome-wide association study of leaf architecture in the maize nested association mapping population. Nature Genetics 43, 159–162.
Genome-wide association study of leaf architecture in the maize nested association mapping population.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtVKrtw%3D%3D&md5=dd2d704bd63ad7a920e271dee9c7afc4CAS | 21217756PubMed |

Trethewey JAK, Rolston MP (2009) Carbohydrate dynamics during reproductive growth and seed yield limits in perennial ryegrass. Field Crops Research 112, 182–188.
Carbohydrate dynamics during reproductive growth and seed yield limits in perennial ryegrass.Crossref | GoogleScholarGoogle Scholar |

Turner LB, Cairns AJ, Armstead IP, Ashton J, Skøt K, Whittaker D, Humphreys MO (2006) Dissecting the regulation of fructan metabolism in perennial ryegrass (Lolium perenne L.) with quantitative trait locus mapping. New Phytologist 169, 45–58.
Dissecting the regulation of fructan metabolism in perennial ryegrass (Lolium perenne L.) with quantitative trait locus mapping.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVygtL4%3D&md5=7ea99433d27b8abb532b13d122dbef70CAS | 16390418PubMed |

Valentine J, Charles AH (1979) The association of dry-matter yield with nitrogen and soluble-carbohydrate concentration in perennial ryegrass (Lolium perenne L.). The Journal of Agricultural Science 93, 657–667.
The association of dry-matter yield with nitrogen and soluble-carbohydrate concentration in perennial ryegrass (Lolium perenne L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXlslCjsA%3D%3D&md5=66fd048588b84c6e373f2f5ca8881fc1CAS |

Vose PB, Breese EL (1964) Genetic variation in the utilization of nitrogen by ryegrass species Lolium perenne and L. multiflorum. Annals of Botany 28, 251–270.
Genetic variation in the utilization of nitrogen by ryegrass species Lolium perenne and L. multiflorum.Crossref | GoogleScholarGoogle Scholar |

Waite R, Boyd J (1953) The water-soluble carbohydrates of grasses. I. Changes occurring during the normal life-cycle. Journal of the Science of Food and Agriculture 4, 197–204.
The water-soluble carbohydrates of grasses. I. Changes occurring during the normal life-cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG3sXjsFanug%3D%3D&md5=c66d7fe0e2301d1aa9475d6ddc77fc6fCAS |

Wang J, Dobrowolski MP, Cogan NOI, Forster JW, Smith KF (2009) Assignment of individual genotypes to specific forage cultivars of perennial ryegrass (Lolium perenne L.) based on SSR markers. Crop Science 49, 49–58.
Assignment of individual genotypes to specific forage cultivars of perennial ryegrass (Lolium perenne L.) based on SSR markers.Crossref | GoogleScholarGoogle Scholar |

Xing Y, Frei U, Schejbel B, Asp T, Lübberstedt T (2007) Nucleotide diversity and linkage disequilibrium in 11 expressed resistance candidate genes in Lolium perenne. BMC Plant Biology 7, 43
Nucleotide diversity and linkage disequilibrium in 11 expressed resistance candidate genes in Lolium perenne.Crossref | GoogleScholarGoogle Scholar | 17683574PubMed |

Yamada T, Jones ES, Cogan NOI, Vecchies AC, Nomura T, Hisano H, Shimamoto Y, Smith KF, Forster JW (2004) QTL analysis of morphological, developmental and winter hardiness-associated traits in perennial ryegrass (Lolium perenne L.). Crop Science 44, 925–935.
QTL analysis of morphological, developmental and winter hardiness-associated traits in perennial ryegrass (Lolium perenne L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXks1ygsr8%3D&md5=3064640b7b6e36ad4392e8928c42fbebCAS |

Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. The Plant Genome 1, 5–20.
Status and prospects of association mapping in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1KgtrfF&md5=ff81ceeef14908b81d6414051b9dc733CAS |