Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

Disease-resistant transgenic adzuki bean plants obtained through an efficient transformation system

Huatao Chen A , Xin Chen A B , Heping Gu A , Xingxing Yuan A , Hongmei Zhang A and Xiaoyan Cui A
+ Author Affiliations
- Author Affiliations

A Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.

B Corresponding author. Email: cx@jaas.ac.cn

Crop and Pasture Science 63(12) 1090-1096 https://doi.org/10.1071/CP12300
Submitted: 15 February 2012  Accepted: 3 December 2012   Published: 27 February 2013

Abstract

An efficient regeneration and transformation system was established and optimised for adzuki bean (Vigna angularis (Willd.) Ohwi & Ohashi). 6-Benzylaminopurine at 5 mg L–1 was used to increase adventitious bud induction frequency. The highest frequency of shoot elongation was 92.8% when using a medium composition of MS salts combined with 0.1 mg L–1 of IAA, 0.5 mg L–1 of GA3, 1.0 mg L–1 of zeatin-riboside, 50 mg L–1 of aspartic acid, and 50 mg L–1 of glutamic acid. In vitro rooting was 100% when shoots were cultured on the solid MS medium supplemented with 1.0 mg L–1 of NAA. Reproducible transformation of epicotyl explants was developed using the A. tumefaciens EHA105 strain. Using a concentration of 40 mg L–1 of acetosyringone, 20 mm MES, and 5 mg L–1 of 6-benzylaminopurine in the co-cultivation medium, a transformation efficiency of 12.6% was attained. Using this transformation protocol, we obtained transgenic adzuki bean plants resistant to soybean mosaic virus by introducing the V. angularis VaPR3 gene.

Additional keywords: epicotyls, regeneration, Vigna angularis, co-cultivation.


References

Adachi T, Kikuta Y, Okazawa Y (1990) Increased efficiency in plant regeneration from epicotyl culture of adzuki bean variety “Erimo-shozu” (Vigna angularis Ohwi & Ohashi). Hokuno 57, 63–65.

Angenon G, De Clercq J, Dillen W, Goossens A, Kapila J, Zambre M, Van Montagu M (1999) Strategies for improving the nutritional quality of Phaseolus beans through genetic engineering. Biotechnology, Agronomy, Society and Environment 3, 233–236.

Aragão FJL, Barros LMG, Brasileiro ACM, Ribeiro SG, Smith FD, Sanford JC, Faria JC, Rech EL (1996) Inheritance of foreign genes in transgenic bean (Phaseolus vulgaris L.) co-transformed via particle bombardment. Theoretical and Applied Genetics 93, 142–150.
Inheritance of foreign genes in transgenic bean (Phaseolus vulgaris L.) co-transformed via particle bombardment.Crossref | GoogleScholarGoogle Scholar |

Chen X, Yi JX, Zhang HM, Chen HT, Yang YW, Wan JM, Zhai HQ (2009) Clone and expression analysis of pathogenesis-related gene VaPR3 in azuki bean (Vigna angularis). Jiangsu Journal of Agricultural Sciences 25, 1119–1123. [in Chinese]

Cruz de Carvalho MH, Van Le B, Zuily-Fodil Y, Pham Thi AT, Tran Thanh Van K (2000) Efficient whole plant regeneration of common bean (Phaseolus vulgaris L.) using thin-cell-layer culture and silver nitrate. Plant Science 159, 223–232.
Efficient whole plant regeneration of common bean (Phaseolus vulgaris L.) using thin-cell-layer culture and silver nitrate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXovFSltrk%3D&md5=d57835bea16d5f6af99180ef9b25d781CAS |

Curtis MD, Grossniklaus U (2003) A Gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiology 133, 462–469.
A Gateway cloning vector set for high-throughput functional analysis of genes in planta.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosVaqtrw%3D&md5=3d4d2338fe736cd8cc7f5f9a803a3258CAS |

De Clercq J, Zambre M, Van Montagu M, Dillen W, Angenon G (2002) An optimized Agrobacterium-mediated transformation procedure for Phaseolus acutifolius A. Gray. Plant Cell Reports 21, 333–340.
An optimized Agrobacterium-mediated transformation procedure for Phaseolus acutifolius A. Gray.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovFOqtLY%3D&md5=cc6ef079ba7b32827fff6add38f403d3CAS |

Dillen W, De Clercq J, Goossens A, Van Montagu M, Angenon G (1997) Agrobacterium-mediated transformation of Phaseolus acutifolius A. Gray. Theoretical and Applied Genetics 94, 151–158.
Agrobacterium-mediated transformation of Phaseolus acutifolius A. Gray.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhvV2gsLk%3D&md5=65576297df62ae5b6791ed38fd96d714CAS |

Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemistry Bulletin 19, 11–15.

Graham PH, Vance CP (2003) Legumes: importance and constraints to greater use. Plant Physiology 131, 872–877.
Legumes: importance and constraints to greater use.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXisFemtb4%3D&md5=9ff107c8badb3c3b2c71491f6326fec0CAS |

Hanafy MS, Rahman MS, Khalafalla MM, El-shemy HA, Nakamoto Y, Ishimoto M, Wakasa K (2006) Accumulation of free tryptophan in azuki bean (Vigna angularis) induced by expression of a gene (OASA1D) for a modified subunit of rice anthranilate synthase. Plant Science 171, 670–676.
Accumulation of free tryptophan in azuki bean (Vigna angularis) induced by expression of a gene (OASA1D) for a modified subunit of rice anthranilate synthase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVOrt7vN&md5=e1551d204d706e5f52655ad1956e6504CAS |

Höfgen R, Willmitzer L (1988) Storage of competent cells for Agrobacterium transformation. Nucleic Acids Research 16, 9877
Storage of competent cells for Agrobacterium transformation.Crossref | GoogleScholarGoogle Scholar |

Jayawardana BC, Hirano T, Han KH, Ishii H, Okada T, Shibayama S, Fukushima M, Sekikawa M, Shimada K (2011) Utilization of adzuki bean extract as a natural antioxidant in cured and uncured cooked pork sausages. Meat Science 89, 150–153.
Utilization of adzuki bean extract as a natural antioxidant in cured and uncured cooked pork sausages.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntlGhsrY%3D&md5=090cdaca38d0f470dd6504e4233ce8c1CAS |

Khalafalla M, El-shemy HA, Mizanur RS, Teraishi M, Ishimoto M (2005) Recovery of herbicide resistant azuki bean (Vigna angularis wild, Ohwi & Oshashi) plants via Agrobacterium-mediated transformation. African Journal of Biotechnology 4, 60–67.

Ko TS, Korban SS (2004) Enhancing the frequency of somatic embryogenesis following Agrobacterium-mediated transformation of immature cotyledons of soybean [Glycine max (L.) Merrill.]. In Vitro Cellular & Developmental Biology. Plant 40, 552–558.
Enhancing the frequency of somatic embryogenesis following Agrobacterium-mediated transformation of immature cotyledons of soybean [Glycine max (L.) Merrill.].Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhsFamtLY%3D&md5=87ee75927d5ccce8a9a0782b4223056eCAS | [

Lumpkin TA, McClary DC (1994) ‘Azuki bean: Botany, production and uses.’ (CAB International: Wallingford, UK)

Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiologia Plantarum 15, 473–497.
A revised medium for rapid growth and bioassays with tobacco tissue culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXksFKm&md5=9656fa223b6484a4fc12840a5836f05eCAS |

Paz MM, Shou H, Guo Z, Zhang Z, Banerjee AK, Wang K (2004) Assessment of conditions affecting Agrobacterium-mediated soybean transformation using the cotyledonary node explant. Euphytica 136, 167–179.
Assessment of conditions affecting Agrobacterium-mediated soybean transformation using the cotyledonary node explant.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXks1aitr8%3D&md5=6b80991fccfada81b65c5081015d4c1fCAS |

Pigeaire A, Abernethy D, Smith PM, Simpson K, Fletcher N, Lu CY, Atkins CA, Cornish E (1997) Transformation of a grain legume (Lupinus angustifolius L.) via Agrobacterium tumefaciens-mediated gene transfer to shoot apices. Molecular Breeding 3, 341–349.
Transformation of a grain legume (Lupinus angustifolius L.) via Agrobacterium tumefaciens-mediated gene transfer to shoot apices.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXntFensbw%3D&md5=88544f7cf0f9078646a6d3527ef17c7eCAS |

Russell DR, Wallace KM, Bathe JH, Martinell BJ, McCabe DE (1993) Stable transformation of Phaseolus vulgaris via electric-discharge mediated particle acceleration. Plant Cell Reports 12, 165–169.
Stable transformation of Phaseolus vulgaris via electric-discharge mediated particle acceleration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisVylurw%3D&md5=02b6dd5b267493858b68aafbf0419e14CAS |

Varisai Mohamed V, Sung JM, Jeng TL, Wang CS (2006) Organogenesis of Phaseolus angularis L.: High efficiency of adventitious shoot regeneration from etiolated seedlings in presence of N6-benzylaminopurine and thidiazuron. Plant Cell, Tissue and Organ Culture 86, 187–199.
Organogenesis of Phaseolus angularis L.: High efficiency of adventitious shoot regeneration from etiolated seedlings in presence of N6-benzylaminopurine and thidiazuron.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnvVyntLg%3D&md5=78a0b5656b425756f18b4f80bf946218CAS |

Wang DG, Ma Y, Liu N, Zheng GJ, Yang ZL, Yang YQ, Zhi HJ (2012) Inheritance of resistances to soybean mosaic virus strains SC4 and SC8 in soybean. Acta Agronomica Sinica 38, 202–209.
Inheritance of resistances to soybean mosaic virus strains SC4 and SC8 in soybean.Crossref | GoogleScholarGoogle Scholar |

Yamada T, Teraishi M, Hattori K, Ishimoto M (2001) Transformation of adzuki bean by Agrobacterium tumefaciens. Plant Cell, Tissue and Organ Culture 64, 47–54.
Transformation of adzuki bean by Agrobacterium tumefaciens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjvVehtLg%3D&md5=b1e229e86cdd6f6d5d3c13c26fc7162dCAS |

Yamada T, Moriyama R, Hattori K, Ishimoto M (2005) Isolation of two -amylase inhibitor genes of tepary bean (P. acutifolius A. Gray) and their functional characterization in genetically engineered azuki bean. Plant Science 169, 502–511.
Isolation of two -amylase inhibitor genes of tepary bean (P. acutifolius A. Gray) and their functional characterization in genetically engineered azuki bean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmsVOhsb0%3D&md5=e56b8747c2438ee6f7af557a07e47346CAS |

Yang Y, Gong J, Li H, Li H, Li C, Wang D, Li K, Zhi H (2011) Identification of a novel Soybean mosaic virus isolate in China that contains a unique 5′ terminus sharing high sequence homology with Bean common mosaic virus. Virus Research 157, 13–18.
Identification of a novel Soybean mosaic virus isolate in China that contains a unique 5′ terminus sharing high sequence homology with Bean common mosaic virus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvV2ntrg%3D&md5=fabc61de374f48f43ce3fb7aca30785dCAS |

Zong XX, Kaga A, Tomooka N, Wang XW, Han OK, Vaughan D (2003) The genetic diversity of the Vigna angularis complex in Asia. Genome 46, 647–658.
The genetic diversity of the Vigna angularis complex in Asia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsVert74%3D&md5=83ba93801cd24aaaa9c4fefb7fbe217eCAS |