Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

Development of a DNA marker tightly linked to low-alkaloid gene iucundus in narrow-leafed lupin (Lupinus angustifolius L.) for marker-assisted selection

X. Li A , H. Yang B , B. Buirchell B and G. Yan A C
+ Author Affiliations
- Author Affiliations

A School of Plant Biology, Faculty of Natural and Agricultural Sciences and Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.

B Department of Agriculture and Food Western Australia, 3 Baron-Hay Court, South Perth, WA 6151, Australia.

C Corresponding author. Email: guijun.yan@uwa.edu.au

Crop and Pasture Science 62(3) 218-224 https://doi.org/10.1071/CP10352
Submitted: 31 October 2010  Accepted: 24 January 2011   Published: 17 March 2011

Abstract

Narrow-leafed lupin (Lupinus angustilolius L.) is a grain legume of exceptionally high nutritive value and much versatile food and animal feed around the world. The development of lupin as a modern crop was limited by its high concentration of alkaloids. Progress in breeding necessitates a better understanding of the genetics underlying the trait – low-alkaloid level (sweet). Marker-assisted selection would allow a better targeting of the desired genes. The microsatellite-anchored fragment length polymorphism (MFLP) fingerprinting technology was applied to an F8 recombination inbred line (RIL) population to identify and select candidate markers linked to the low-alkaloid gene iucundus. Four MFLP markers were identified as candidate markers based on their banding patterns in the F8 RIL population. One of these candidate markers showing the best correlation with phenotypes in the representative germplasm was selected and successfully converted into a simple PCR-based co-dominant marker, named IucLi. This established marker IucLi is 0.9 cM away from the sweet (low-alkaloid) gene iucundus. The accuracy between marker genotype and phenotype is 100% in the common 25 cultivars and 86.4% among the 125 accessions of narrow-leafed lupin core collection. Marker IucLi is being used in narrow-leafed lupin breeding for selection of ‘sweet’ individuals. The marker is also used to develop near-isogenic lines to further characterise and fine mapping the iucundus locus.

Additional keywords: agronomic traits, plant breeding, sequence-specific marker.


References

Boersma JG, Buirchel BJ, Sivasithamparam K, Yang H (2007a) Development of two sequence-specific PCR markers linked to the le gene that reduces pod shattering in narrow-leafed lupin (Lupinus angustifolius L.). Genetics and Molecular Biology 30, 623–629.
Development of two sequence-specific PCR markers linked to the le gene that reduces pod shattering in narrow-leafed lupin (Lupinus angustifolius L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFSlu77F&md5=dac04d0e3f2ae90cfada8461c391653bCAS |

Boersma JG, Buirchell BJ, Sivasithamparam K, Yang H (2007b) Development of a PCR marker tightly linked to mollis, the gene that controls seed dormancy in Lupinus angustifolius L. Plant Breeding 126, 612–616.
Development of a PCR marker tightly linked to mollis, the gene that controls seed dormancy in Lupinus angustifolius L.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlsFagsA%3D%3D&md5=6bec66c7dc18d19f2192a4a04c1419dcCAS |

Boersma JG, Buirchell BJ, Sivasithamparam K, Yang H (2007c) Development of a sequence-specific PCR marker linked to the Ku gene which removes the vernalization requirement in narrow-leafed lupin. Plant Breeding 126, 306–309.
Development of a sequence-specific PCR marker linked to the Ku gene which removes the vernalization requirement in narrow-leafed lupin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntlOmu7k%3D&md5=5ae800774e5055c2136527d9919822d8CAS |

Boersma J, Nelson M, Sivasithamparam K, Yang H (2009) Development of sequence-specific PCR markers linked to the Tardus gene that reduces pod shattering in narrow-leafed lupin (Lupinus angustifolius L.). Molecular Breeding 23, 259–267.
Development of sequence-specific PCR markers linked to the Tardus gene that reduces pod shattering in narrow-leafed lupin (Lupinus angustifolius L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtFOj&md5=2029cd24baaed9cab21f609b329588feCAS |

Clements JC, Buirchel BJ, Yang H, Smith PMC, Sweetingham MW, Smith CG (2005) Lupin. In ‘Genetic resources, chromosome engineering and crop improvement’. (Eds RJ Singh, PP Jauhar) pp. 231–324. (CRC Press, Taylor & Francis Group: Boca Raton, FL)

Cowling WA (1999) Pedigrees and characteristics of narrow-leafed lupin cultivars released in Australia from 1967 to 1998. Bulletin 4365, Agriculture Western Australia, Perth.

Eagles HA, Bariana HS, Ogbonnaya FC, Rebetzke GJ, Hollamby GJ, Henry RJ, Henschke PH, Carter M (2001) Implementation of markers in Australian wheat breeding. Australian Journal of Agricultural Research 52, 1349–1356.
Implementation of markers in Australian wheat breeding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltlOmuw%3D%3D&md5=befd6a71c1058e7f076602ee461b3511CAS |

Gladstones JS (1970) Lupins as crop plants. Field Crop Abstracts 23, 123–148.

Gladstones JS, Atkins C, Hamblin J (1998) ‘Lupins as crop plants: biology, production and utilization.’ (CAB International: New York)

Gremigni P, Hamblin J, Harris D, Cowling WA (2003) The interaction of phosphorus and potassium with seed alkaloid concentrations, yield and mineral content in narrow-leafed lupin (Lupinus angustifolius L.). Plant and Soil 253, 413–427.
The interaction of phosphorus and potassium with seed alkaloid concentrations, yield and mineral content in narrow-leafed lupin (Lupinus angustifolius L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlsFKqs74%3D&md5=fc729548201003c117f00a226b475e3fCAS |

Gupta PK, Varshney RK, Sharma PC, Ramesh B (1999) Molecular markers and their applications in wheat breeding. Plant Breeding 118, 369–390.
Molecular markers and their applications in wheat breeding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhsVCmtw%3D%3D&md5=ddfed0d072ff5eb72ce881ced39c1627CAS |

Harrison JEM, Williams W (1982) Genetical control of alkaloids in Lupinus albus. Euphytica 31, 357–364.
Genetical control of alkaloids in Lupinus albus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXltVGktw%3D%3D&md5=943c9d1c4c611d6ffa04ea9e9848dbf1CAS |

Harrison JEM, Williams W (1983) The control of alkaloid by mutant alleles in Lupinus albus and Lupinus angustifolius. Journal of Plant Breeding 90, 32–41.

Hirai MY, Suzuki H, Yamazaki M, Saito K (2000) Biochemical and partial molecular characterization of bitter and sweet forms of Lupinus angustifolius, an experimental model for study of molecular regulation of quinolizidine alkaloid biosynthesis. Chemical & Pharmaceutical Bulletin 48, 1458–1461. [Tokyo]

Holland J (2004) Implementation of molecular markers for quantitative traits in breeding programs—challenges and opportunities. In ‘New Directions for a Diverse Planet: Proceedings of the 4th International Crop Science Congress’. Brisbane, Qld., 26 September–1 October 2004. (Eds T Fischer, N Turner, J Angus, L McIntyre, M Robertson, A Borrell, D Lloyd) (Regional Institute, Gosford, Australia) Available at: www.cropscienceorg.au/icsc2004

Kurlovich BS (2002) Genetics of lupins. In ‘Lupins: geography, classification, genetic resources and breeding’. (Ed. BS Kurlovich) pp. 313–350. (OY International North Express: St Petersburg, Russia; Pellosniemi, Finland)

Li X, Renshaw D, Yang H, Yan G (2010) Development of a co-dominant DNA marker tightly linked to gene tardus conferring reduced pod shattering in narrow-leafed lupin (Lupinus angustifolius L.). Euphytica 176, 49–58.
Development of a co-dominant DNA marker tightly linked to gene tardus conferring reduced pod shattering in narrow-leafed lupin (Lupinus angustifolius L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlShtr7E&md5=afc09294ced1212eb1606af96312d434CAS |

Lin R, Renshaw D, Luckett D, Clements J, Yan G, Adhikari K, Buirchell B, Sweetingham M, Yang H (2009) Development of a sequence-specific PCR marker linked to the gene ‘pauper’ conferring low-alkaloids in white lupin (Lupinus albus L.) for marker assisted selection. Molecular Breeding 23, 153–161.
Development of a sequence-specific PCR marker linked to the gene ‘pauper’ conferring low-alkaloids in white lupin (Lupinus albus L.) for marker assisted selection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtl2qt7%2FK&md5=52223c75814bf38f362ee56f6f694af2CAS |

Manly KF, Cudmore JRH, Meer JM (2001) Map Manager QTX, cross-platform software for genetic mapping. Mammalian Genome 12, 930–932.
Map Manager QTX, cross-platform software for genetic mapping.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXosFGgtbo%3D&md5=2abdb167c6c43777b2f8b883d3ad3138CAS | 11707780PubMed |

Nelson MN, Moolhuijzen PM, Boersma JG, Chudy M, Lesniewska K, Bellgard M, Oliver RP, Swiecicki W, Wolko B, Cowling WA, Ellwood SR (2010) Aligning a new reference genetic map of Lupinus angustifolius with the genome sequence of the model legume, Lotus japonicus. DNA Research 17, 73–83.
Aligning a new reference genetic map of Lupinus angustifolius with the genome sequence of the model legume, Lotus japonicus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkvVymtbw%3D&md5=99b6f4aba667efc17f0641d8d579c7b7CAS | 20133394PubMed |

Petterson DS, Sipsas S, Mackintosh JB (1997) ‘The chemical composition and nutritional value of Australian pulse.’ (Grains Research & Development Corporation: Canberra)

Smolenski S, Kinghorn A, Balandrin M (1981) Toxic constituents of legume forage plants. Economic Botany 35, 321–355.
Toxic constituents of legume forage plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXkvFGmsLg%3D&md5=59945ebbbde7b3cf576a24c8f3b12533CAS |

Swiecicki W, Swiecicki W (1995) Domestication and breeding of narrow-leafed lupin (Lupinus angustifolius L.). Journal of Applied Genetics 36, 155–167.

Von Sengbusch R (1930) Bitterstoffarme Lupinen. Züchter 2, 1–2.

Vos P, Hogers R, Bleeker M, Reijans M, Lee Tvd, Hornes M, Friters A, Pot J, Paleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research 23, 4407–4414.
AFLP: a new technique for DNA fingerprinting.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpslensbo%3D&md5=2e28da15615c4c56933a6371f8bd2f2aCAS | 7501463PubMed |

Waller GR, Nowacki EK (1978) ‘Alkaloid biology and metabolism in plants.’ (Plenum Press: New York)

Wink M, MeiBner C, Witte L (1995) Patterns of quinolizidine alkaloids in 56 species of the genus Lupinus. Phytochemistry 38, 139–153.
Patterns of quinolizidine alkaloids in 56 species of the genus Lupinus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjvFGku7o%3D&md5=a0a8503097fabdc7583b300d35862dc6CAS |

Yang H, Boersma JG, You M, Buirchell BJ, Sweetingham MW (2004) Development and implementation of a sequence-specific PCR marker linked to a gene conferring resistance to anthracnose disease in narrow-leafed lupin (Lupinus angustifolius L.). Molecular Breeding 14, 145–151.
Development and implementation of a sequence-specific PCR marker linked to a gene conferring resistance to anthracnose disease in narrow-leafed lupin (Lupinus angustifolius L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXms12itrs%3D&md5=16372afd34d57781d03184af68eb8722CAS |

Yang H, Renshaw D, Thomas G, Buirchell B, Sweetingham M (2008) A strategy to develop molecular markers applicable to a wide range of crosses for marker assisted selection in plant breeding: a case study on anthracnose disease resistance in lupin (Lupinus angustifolius L.). Molecular Breeding 21, 473–483.
A strategy to develop molecular markers applicable to a wide range of crosses for marker assisted selection in plant breeding: a case study on anthracnose disease resistance in lupin (Lupinus angustifolius L.).Crossref | GoogleScholarGoogle Scholar |

Yang H, Shankar M, Buirchell B, Sweetingham M, Caminero C, Smith P (2002) Development of molecular markers using MFLP linked to a gene conferring resistance to Diaporthe toxica in narrow-leafed lupin (Lupinus angustifolius L.). Theoretical and Applied Genetics 105, 265–270.
Development of molecular markers using MFLP linked to a gene conferring resistance to Diaporthe toxica in narrow-leafed lupin (Lupinus angustifolius L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xntlaqu7g%3D&md5=d8a138772b5d91739999eb23c4463f45CAS | 12582528PubMed |

Yang H, Sweetingham MW, Cowling WA, Smith PMC (2001) DNA fingerprinting based on microsatellite-anchored fragment length polymorphisms, and isolation of sequence-specific PCR markers in lupin (Lupinus angustifolius L.). Molecular Breeding 7, 203–209.
DNA fingerprinting based on microsatellite-anchored fragment length polymorphisms, and isolation of sequence-specific PCR markers in lupin (Lupinus angustifolius L.).Crossref | GoogleScholarGoogle Scholar |

You M, Boersma JG, Buirchell BJ, Sweetingham MW, Siddique KHM, Yang H (2005) A PCR-based molecular marker applicable for marker-assisted selection for anthracnose disease resistance in lupin breeding. Cellular & Molecular Biology Letters 10, 123–134.