Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

Phenotypic variability in Holcus lanatus L. in southern Chile: a strategy that enhances plant survival and pasture stability

Ignacio F. López A C , Oscar A. Balocchi A , Peter D. Kemp B and Claudio Valdés A
+ Author Affiliations
- Author Affiliations

A Instituto de Producción Animal, Facultad de Ciencias Agrarias, Universidad Austral de Chile, Casilla 567, Valdivia, Chile.

B Institute of Natural Resources, Massey University, Palmerston North, New Zealand.

C Corresponding author. Email: ilopez@uach.cl

Crop and Pasture Science 60(8) 768-777 https://doi.org/10.1071/CP09001
Submitted: 1 January 2009  Accepted: 4 June 2009   Published: 5 August 2009

Abstract

Holcus lanatus L. can colonise a wide range of sites within the naturalised grassland of the Humid Dominion of Chile. The objectives were to determine plant growth mechanisms and strategies that have allowed H. lanatus to colonise contrasting pastures and to determine the existence of ecotypes of H. lanatus in southern Chile. Plants of H. lanatus were collected from four geographic zones of southern Chile and established in a randomised complete block design with four replicates. Five newly emerging tillers were marked per plant and evaluated at the vegetative, pre-ear emergence, complete emerged inflorescence, end of flowering period, and mature seed stages. At each evaluation, one marked tiller was harvested per plant. The variables measured included lamina length and width, tiller height, length of the inflorescence, total number of leaves, and leaf, stem, and inflorescence mass. At each phenological stage, groups of accessions were statistically formed using cluster analysis. The grouping of accessions (cluster analysis) into statistically different groups (ANOVA and canonical variate analysis) indicated the existence of different ecotypes. The phenotypic variation within each group of the accessions suggested that each group has its own phenotypic plasticity. It is concluded that the successful colonisation by H. lanatus has resulted from diversity within the species.

Additional keywords: plant colonisation, environmental disturbances, stress, ecotype, constraint.


Acknowledgment

This work was supported by a grant from the Chilean National Fund for Science and Technology (FONDECYT), Project 1000429.


References


Adams TE, Vaughn CE, Sands PB (1999) Geographic races may exist among perennial grasses. California Agriculture 53, 33–38. open url image1

Balocchi O (1999) Recursos forrajeros utilizados en producción de leche [Forages used in dairy production]. In ‘Competitividad de la producción lechera nacional’. (Eds R Anrique, L Latrille, O Balocchi, D Alomar, V Moreira, R Smith, D Pinochet, G Vargas) pp. 29–74. (Universidad Austral de Chile Publishing: Valdivia, Chile)

Begon M , Harper JL , Townsend CR (1996) ‘Ecology: individuals, populations and communities.’ (Blackwell Science: Oxford, UK)

Bolaric S, Barth S, Melchinger AE, Posselt UK (2005) Molecular genetic diversity within and among German ecotypes in comparison to European perennial ryegrass cultivars. Plant Breeding 124, 257–262.
Crossref | GoogleScholarGoogle Scholar | open url image1

Briske DD (1996) Strategies of plant survival in grazed systems: a functional interpretation. In ‘The ecology and management of grazing systems’. (Eds J Hodgson, AW Illius) pp. 37–67. (CAB International: Wallingford, UK)

Byars SG, Papst W, Hoffmann AA (2007) Local adaptation and cogradient selection in the Alpine plant, Poa hiemata, along a narrow altitudinal gradient. Evolution 61, 2925–2941.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Callahan HS (1997) Infraspecific differentiation in the Amphicarpaea bracteata (Fabaceae) species complex: varieties and ecotypes. Rhodora 99, 64–82. open url image1

Čiamporová M (2000) Diverse responses of root cell structure to aluminium stress. Plant and Soil 226, 113–116.
Crossref | GoogleScholarGoogle Scholar | open url image1

Clausen J , Hiesey WM (1958) ‘Experimental studies on the nature of species. IV. Genetic structure of ecological races.’ (Carnegie Institute of Washington: Washington, DC)

Dyer AR, Goldberg DE, Turkington R, Sayre C (2001) Effects of growing conditions and source habitat on plant traits and functional group definition. Functional Ecology 15, 85–95.
Crossref | GoogleScholarGoogle Scholar | open url image1

Elton CS (1958) ‘The reasons for conservation. The ecology of invasions by animals and plants.’ pp. 143–153. (Chapman and Hall: London)

Gastó J , Gallardo S , Contreras D (1987) ‘Caracterización de los pastizales de Chile. Reinos, Dominios y Provincias [Characterisation of the Chilean grasslands].’ pp. 194–250. (Pontificia Universidad Católica de Chile: Santiago, Chile)

Hodgson J , Illius AW (1996) ‘The ecology and management of grazing systems.’ (CAB International: Wallingford, UK)

Hon WC, Griffith M, Chong P, Yang DSC (1994) Extraction and isolation of antifreeze proteins from winter rye (Secale cereale) leaves. Plant Physiology 104, 971–980.
PubMed |
open url image1

Hutchings MJ, Turkington R, Carey P, Klein E (1997) Morphological plasticity in Trifolium repens L.: the effects of clone genotype, soil nutrient level, and the genotype of conspecific neighbours. Canadian Journal of Botany 75, 1382–1393. open url image1

Jamjod S, Rerkasem B (1999) Genotypic variation in response of barley to boron deficiency. Plant and Soil 215, 65–72.
Crossref | GoogleScholarGoogle Scholar | open url image1

Jobson JD (1996) ‘Applied multivariate data analysis. Vol. II: Categorical and multivariate methods.’ (Springer-Verlag: New York)

John JA, Draper NR (1980) An alternative family of transformations. Applied Statistics 29, 190–197.
Crossref | GoogleScholarGoogle Scholar | open url image1

Joshi J, Schmid B, Caldeira MC, Dimitrakopoulos PG, Good J , et al . (2001) Local adaptation enhances performance of common plant species. Ecology Letters 4, 536–544.
Crossref | GoogleScholarGoogle Scholar | open url image1

Kareiva P (1996) Diversity and sustainability on the prairie. Nature 379, 673–674.
Crossref | GoogleScholarGoogle Scholar | open url image1

Kidd PS, Proctor J (2000) The regrowth response of ecotypes of Holcus lanatus L. from different soil types in Northwestern Europe to phenolic acids. Plant Biology 2, 335–343.
Crossref | GoogleScholarGoogle Scholar | open url image1

Krishnaiah PR , Kanal LN (1990) ‘Handbook of statistics 2: Classification, pattern recognition and reduction of dimensionality.’ (North-Holland: Amsterdam)

Lodge G (1996) Temperate native Australian grass improvement by selection. New Zealand Journal of Agricultural Research 39, 487–497. open url image1

López I, Balocchi O, Lailhacar P, Oyarzún C (1997) Caracterización de sitios de crecimiento de seis especies pratenses nativas y naturalizadas del Dominio Húmedo de Chile. Agro Sur [Characterization of the growing sites of six native and naturalized species in the Humid Dominion of Chile] 25, 62–80. open url image1

López I, Balocchi O, Niklitschek P (1999) Caracterización fenológica y productiva de Agrostis capillaris y Holcus lanatus en el Dominio Húmedo de Chile. Agro Sur [Phenological and productive characterisation of and in the Dominio Húmedo of Chile] 27, 59–81. open url image1

Marcuvitz S, Turkington R (2000) Differential effects of light quality, provided by different grass neighbours, on the growth and morphology of Trifolium repens L. (white clover). Oecologia 125, 293–300.
Crossref | GoogleScholarGoogle Scholar | open url image1

Mehrhoff LA, Turkington R (1990) Microevolution and site-specific outcomes of competition among pasture plants. Journal of Ecology 78, 745–756.
Crossref | GoogleScholarGoogle Scholar | open url image1

Milton SJ, Dean WRJ, Du Plessis MA, Siegfried WR (1994) A conceptual model of arid rangeland degradation. The escalating cost of declining productivity. Bioscience 44, 70–76.
Crossref | GoogleScholarGoogle Scholar | open url image1

Montaldo P, Fuentes R (1981) Zonificación agroecológica de la Décima Región de Chile II Zonas agroclimáticas. Agro Sur [Agroecological zones of the Tenth Region of Chile II Agroclimatic zones] 9, 70–75. open url image1

Montaldo P, MacDonald R, Fuentes R (1982) Zonificación agroecológico de la Décima Región, Chile. Agro Sur [Agroecological zones of the Tenth Region, Chile] 10, 131–140. open url image1

Philippi RA (1875) Sobre las plantas que Chile posee en común con Europa. Anales Universidad de Chile [About the common vegetation between Chile and Europe] 47, 131–140. open url image1

Rengel Z (2000) Ecotypes of Holcus lanatus tolerant to zinc toxicity also tolerate zinc deficiency. Annals of Botany 86, 1119–1126.
Crossref | GoogleScholarGoogle Scholar | open url image1

Rice KJ, Mack RN (1991) Ecological genetics of Bromus tectorum. I. A hierarchical analysis of phenotypic variation. Oecologia 88, 77–83.
Crossref | GoogleScholarGoogle Scholar | open url image1

Romero M, Casanova A, Iturra G, Reyes A, Montenegro G, Alberdi M (1999) Leaf anatomy of Deschampsia antarctica (Poaceae) from the Maritime Antarctic and its plastic response to changes in the growth conditions. Revista Chilena de Historia Natural (Chile) 72, 411–425. open url image1

Sanada Y, Takai T, Yamada T (2007) Ecotypic variation of water-soluble carbohydrate concentration and winter hardiness in cocksfoot (Dactylis glomerata L.). Euphytica 153, 267–280.
Crossref | GoogleScholarGoogle Scholar | open url image1

Steinger T, Stephan A, Schmid B (2007) Predicting adaptive evolution under elevated atmospheric CO2 in the perennial grass Bromus erectus. Global Change Biology 13, 1028–1039.
Crossref | GoogleScholarGoogle Scholar | open url image1

Sultan SE (1987) Evolutionary implications of phenotypic plasticity in plants. Evolutionary Biology 21, 127–178. open url image1

Teuber N (1988) La pradera en los suelos Ñadi de la Décima Región. [The grassland in the Ñadi soils of the Tenth Region]. In ‘Praderas para Chile’. (Ed. I Ruíz) pp. 493–504. (Instituto de Investigaciones Agropecuarias: Santiago, Chile)

Tilman D (1994) Community, diversity and succession: the roles of competition, dispersal, and habitat modification. In ‘Biodiversity and ecosystem function’. (Eds ED Schulze, HA Mooney) pp. 324–344. (Springer-Verlag: Berlin)

Tilman D (1999) Diversity and production in European grasslands. Science 286, 1099–1100.
Crossref | GoogleScholarGoogle Scholar | open url image1

Tilman D, Downing JA (1994) Biodiversity and stability in grasslands. Nature 367, 363–365.
Crossref | GoogleScholarGoogle Scholar | open url image1

Tilman D, Reich PB, Knops J, Wedin D, Mielke T, Lehman C (2001) Diversity and productivity in a long-term grassland experiment. Science 294, 843–845.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Tilman D, Wedin D, Knops J (1996) Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379, 718–720.
Crossref | GoogleScholarGoogle Scholar | open url image1

Valdés C (2002) Caracterización y variabilidad agronómica mediante atributos fenotípìcos de accesiones de Holcus lanatus L. colectadas en la Décima Región, Chile. [Variability of phenotypical traits and agronomic characterisation of Holcus lanatus L. accessions collected from the 10th Region, Chile]. AgricSc Thesis, Universidad Austral de Chile, Valdivia, Chile.

Waite S (1994) Field evidence of plastic growth responses to habitat heterogeneity in the clonal herb Ranunculus repens. Ecological Research 9, 311–316.
Crossref | GoogleScholarGoogle Scholar | open url image1

Wardle DA, Bonner DA, Barker GM (2000) Stability of ecosystem properties in response to above-ground functional group richness and composition. Oikos 89, 11–23.
Crossref | GoogleScholarGoogle Scholar | open url image1

Wassom JJ, Tranel PJ, Wax LM (2002) Variation among U.S. accessions of common cocklebur (Xanthium strumarium). Weed Technology 16, 171–179.
Crossref | GoogleScholarGoogle Scholar | open url image1

Watkinson AR, Ormerod SJ (2001) Grasslands, grazing and biodiversity: editors’ introduction. Journal of Ecology 38, 233–237. open url image1

Wedderburn ME, Pengelly WJ, Tucker MA, Di Menna ME (1989) Description of ryegrass removed from New Zealand North Island hill country. New Zealand Journal of Agricultural Research 32, 521–529. open url image1

Wedderburn ME, Tucker MA, Pengelly WJ (1990) Responses of a New Zealand North Island hill perennial ryegrass collection to nitrogen, moisture stress, and grass grub (Costelytra zealandica) infestation. New Zealand Journal of Agricultural Research 33, 405–411. open url image1

Weihs C (1995) Canonical discriminant analysis: comparison of resampling methods and convex-hull approximation. In ‘Recent advances in descriptive multivariate analysis’. (Ed. W Krzanowski) pp. 34–50. (Oxford University Press: New York)

Williams W (1996) Genetic resources of temperate native and low-input grasses in New Zealand and Australian collections. New Zealand Journal of Agricultural Research 39, 513–526. open url image1

Wilson JB (1999) Guilds, functional types and ecological groups. Oikos 86, 507–522.
Crossref | GoogleScholarGoogle Scholar | open url image1

Wilson JB, Rapson GL (1995) The genetics of naturalization: a comparison of morphological variation within and between populations of Agrostis capillaris L. as an exotic in New Zealand and as a native in Britain. New Zealand Journal of Ecology 19, 195–202. open url image1

Woodward FI , Kelly CK (1997) Plant functional types: towards a definition by environmental constraints. In ‘Plant functional types: their relevance to ecosystem properties and global change’. (Eds TM Smith, HH Shugart, FI Woodward) pp. 47–65. (Cambridge University Press: Cambridge, UK)

Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Research 14, 415–421.
Crossref | GoogleScholarGoogle Scholar | open url image1