A polymerase chain reaction assay for cucumber mosaic virus in lupin seeds
S Wylie, CR Wilson, RAC Jones and MGK Jones
Australian Journal of Agricultural Research
44(1) 41 - 51
Published: 1993
Abstract
Seed is the main source of infection of narrow-leafed lupin (Lupinus angustifolius) crops by cucumber mosaic virus (CMV). The ELISA procedure is currently used for large-scale, routine testing of lupin seed samples, but a more sensitive, reliable and labour-saving assay is needed which detects levels of seed infection as low as 0.1%. A Polymerase Chain Reaction (PCR) using ground dry seed samples was developed for this purpose. Primers based on concensus sequences of eight published CMV coat protein cDNAs (RNA3) of CMV subgroups 1 and 2 were used. The assay involved (1) a reverse transcription step for cDNA synthesis and (2) amplification of a specific fragment (482-501 bp depending on the strain) by PCR. Two methods of extracting virus from infected lupin material were used: (i) a rapid procedure which was effective for samples with higher levels of infection, e.g. infected leaves and 20.5% infected seed; (ii) a phenol-chloroform procedure, which led to greater sensitivity, enabling reliable detection of 0.1% seed infection. It detected CMV in 16 commercial seed samples (0.1-8% seed infection) belonging to seven cultivars from 12 different localities. Both methods were suitable for routine testing of the flour derived from grinding dry seed. On dissection of infected seeds, CMV was detected in the cotyledons and embryo and usually in or on the testa. The PCR assay detected virus from both CMV subgroups, but only subgroup 2 was found in lupin seed samples. The two CMV subgroups can be distinguished by digestion of amplified DNA with the restriction enzyme EcoRI; only CMV strains of subgroup 2 are digested to yield two fragments of size 330 and 170 bp.Keywords: Cucumber Mosaic Virus (CMV); Polymerase Chain Reaction (PCR); Lupinus angustifolius; lupin seeds; routine testing
https://doi.org/10.1071/AR9930041
© CSIRO 1993