Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

Decline of vesicular-arbuscular mycorrhizae in long fallow disorder of field crops and its expression in phosphorus deficiency of sunflower

JP Thompson

Australian Journal of Agricultural Research 38(5) 847 - 867
Published: 1987

Abstract

Poor growth of crops after long fallows (> 12 months) in cracking clay soils of the northern areas of the Australian grain belt is known as 'long fallow disorder'. Various crop species, including wheat (Triticum aestivum L.), chickpea (Cicer arietinum L.), grain sorghum [Sorghum bicolor (L.) Moench], sudan grass [Sorghum sudanense (Piper) Stapf], sunflower (Helianthus annuus L.), soybean [Glycine max (L.) Merr.] and maize (Zea mays L.), had less root colonization with vesicular-arbuscular mycorrhizal (VAM) fungi and plant weight after long fallows than after short fallows. An experiment was conducted with a phosphorus-deficient soil that had been either fallowed for 3 years or sequentially cropped to cotton, sorghum and sunflower. Cropped soil had more mycorrhizal propagules consisting of intact spores and colonized roots than long fallow soil. In the glasshouse, mycorrhizal colonization of sunflower (cv. Hysun 33) developed quickly in previously cropped soil to peak at 80% of root length at 72 days (flowering), but in long fallow soil it proceeded slowly, attaining 35% of root length at 72 days. Inoculation of long fallow soil with 20% w/w cropped soil resulted in extensive root colonization (89% at 72 days), eliminated P deficiency symptoms and more than doubled plant growth and final P uptake. Inoculation with similar soil treated with gamma radiation to kill propagules of mycorrhizal fungi had no effect on plant growth. Sunflower grew extremely poorly in irradiated soil with considerable leaf necrosis due to P deficiency. Reinoculation with cropped soil resulted In high levels of mycorrhizal colonization and good plant growth. It was concluded that long fallow disorder is caused by a decline in viable propagules of mycorrhizal fungi during fallowing, resulting in poor root colonization and symbiotic effectiveness of a subsequent crop. Fertilizing with phosphorus (50 mg P/kg soil) delayed the development of mycorrhizal colonization, but increased final lengths of colonized roots at 72 days. Zinc fertilizer (15 mg Zn/kg soil) slightly improved mycorrhizal colonization, and basal fertilizer (N, K, S, Ca) substantially improved colonization in long fallow soil inoculated with cropped soil.

https://doi.org/10.1071/AR9870847

© CSIRO 1987

Committee on Publication Ethics


Export Citation Get Permission

View Dimensions

View Altmetrics