Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

Design and testing of an automatic irrigation controller for fruit tree orchards, based on sap flow measurements

J. E. Fernández A D , R. Romero B , J. C. Montaño A , A. Diaz-Espejo A , J. L. Muriel B , M. V. Cuevas A , F. Moreno A , I. F. Girón A and M. J. Palomo C
+ Author Affiliations
- Author Affiliations

A Instituto de Recursos Naturales y Agrobiología (IRNASE-CSIC), Avenida Reina Mercedes 10, 41012 Sevilla, Spain.

B IFAPA, Centro Las Torres-Tomejil, Carretera Sevilla-Alcalá del Rio km 12,2. 41200, Alcalá del Rio, Sevilla, Spain.

C E.T.U. de Ingenieros Técnicos Agrícolas, Carretera de Utrera, km 1 41013 Sevilla, Spain.

D Corresponding author. Email: jefer@irnase.csic.es

Australian Journal of Agricultural Research 59(7) 589-598 https://doi.org/10.1071/AR07312
Submitted: 24 August 2007  Accepted: 28 February 2008   Published: 3 July 2008

Abstract

We designed and tested an automatic irrigation control system for fruit tree orchards, designated CRP. At the end of each day, the device calculates the irrigation dose (ID) from sap flow readings in the trunk of trees irrigated to replenish the crop water needs, relative to similar measurements made in over-irrigated trees. It then acts on the pump and electrovalve to supply an ID sufficient to keep the soil close to its field capacity during the irrigation period. Remote control of the system is possible from any computer or Smartphone connected to the Internet. We tested the CRP in an olive orchard in southern Spain. The device was robust and able to filter and amplify the output voltages of the heat-pulse velocity probes and to calculate reliable sap flow data. It calculated and supplied daily irrigation amounts to the orchard according to the specified irrigation protocol. The remote control facility proved to be useful for getting real-time information both on the CRP behaviour and the applied IDs, and for changing parameters of the irrigation protocol. For our conditions, olive trees with big root systems growing in a soil with a remarkable water-holding capacity, the approach mentioned above for calculating ID had not enough resolution to replace the daily crop water consumption. The device, however, was able to react when the soil water content fell below the threshold for soil water deficit. The threshold value was identified with simultaneous measurements of stem water potential in the instrumented trees. Our results suggest a change in the irrigation protocol that will allow the CRP to apply a recovery irrigation whenever that threshold is reached, making the device suitable for applying a deficit irrigation strategy in the orchard.

Additional keywords: irrigation control, remote handling, microprocessor applications, sap flow, olive.


Acknowledgments

This work was funded by the IFAPA, Consejería de Innovación, Ciencia y Empresa de la Junta de Andalucía, research project ref. C03-056, and by the research project CICYT/FEDER AGL2004-0794-CO3-02/AGR.


References


Alarcon JJ, Domingo R, Green SR, Nicolás E, Torrecillas A (2003) Estimation of hydraulic conductance within field-grown apricot using sap flow measurements. Plant and Soil 251, 125–135.
Crossref | GoogleScholarGoogle Scholar | open url image1

Alarcon JJ, Domingo R, Green SR, Sanchez-Blanco MJ, Rodriguez P, Torrecillas A (2000) Sap flow as an indicator of transpiration and the water status of young apricot trees. Plant and Soil 227, 77–85.
Crossref | GoogleScholarGoogle Scholar | open url image1

Allen R , Pereira LS , Raes D , Smith M (1998) ‘Crop evapotranspiration—guidelines for computing crop water requirements.’ FAO Irrigation and Drainage Paper 56. (FAO: Rome) www.fao.org/docrep/X0490E/X0490E00.htm

Alves I, Pereira LS (2000) Non-water-stressed baselines for irrigation scheduling with infrared thermometers: a new approach. Irrigation Science 19, 101–106.
Crossref | GoogleScholarGoogle Scholar | open url image1

Caspari HW, Green SR, Edwards WRN (1993) Transpiration of well-watered and water-stressed Asian pears as determined by lysimetry, heat-pulse, and estimated by a Penman-Monteith model. Agricultural and Forest Meteorology 67, 13–27.
Crossref | GoogleScholarGoogle Scholar | open url image1

Conejero W, Alarcón JJ, García-Orellana Y, Nicolás E, Torrecillas A (2007) Evaluation of sap flow and trunk diameter sensors for irrigation scheduling in early maturing peach trees. Tree Physiology 27, 1753–1759.
PubMed |
open url image1

Constantz J, Murphy F (1990) Monitoring moisture storage in trees using time domain reflectometry. Journal of Hydrology 119, 31–42.
Crossref | GoogleScholarGoogle Scholar | open url image1

Fereres E, Evans RG (2006) Irrigation of fruit trees and vines: an introduction. Irrigation Science 24, 55–57.
Crossref | GoogleScholarGoogle Scholar | open url image1

Fereres E, Goldhamer DA, Parsons LR (2003) Irrigation water management of horticultural crops. HortScience 38, 1036–1043. open url image1

Fereres E , Ruz C , Castro J , Gómez JA , Pastor M (1996) Recuperación del olivo después de una sequía extrema. In ‘Proceedings of the XIV Congreso Nacional de Riegos, Aguadulce (Almería)’. 11–13 June. pp. 89–93. (AERYD: Madrid, Spain)

Fernández JE, Díaz-Espejo A, Infante JM, Durán P, Palomo MJ, Chamorro V, Girón IF, Villagarcía L (2006b) Water relations and gas exchange in olive trees under regulated deficit irrigation and partial rootzone drying. Plant and Soil 284, 273–291.
Crossref | GoogleScholarGoogle Scholar | open url image1

Fernández JE, Durán PJ, Palomo MJ, Díaz-Espejo A, Chamorro V, Girón IF (2006a) Calibration of sap flow measurements by the compensation heat-pulse method in olive, plum and orange trees: relations with xylem anatomy. Tree Physiology 26, 719–728.
PubMed |
open url image1

Fernández JE, Green SR, Caspari HW, Díaz-Espejo A, Cuevas MV (2008) The use of sap flow measurements for scheduling irrigation in olive, apple and Asian pear trees and in grapevines. Plant and Soil 305, 91–104.
Crossref | GoogleScholarGoogle Scholar | open url image1

Fernández JE, Moreno F (1999) Water use by the olive tree. Journal of Crop Production 2, 101–162.
Crossref | GoogleScholarGoogle Scholar | open url image1

Fernández JE, Moreno F, Cabrera F, Arrue JL, Martín-Aranda J (1991) Drip irrigation, soil characteristics and the root distribution and root activity of olive trees. Plant and Soil 133, 239–251.
Crossref |
open url image1

Fernández JE, Moreno F, Girón IF, Blázquez OM (1997) Stomatal control of water use in olive tree leaves. Plant and Soil 190, 179–192.
Crossref | GoogleScholarGoogle Scholar | open url image1

Fernández JE, Palomo MJ, Díaz-Espejo A, Clothier BE, Green SR, Girón IF, Moreno F (2001) Heat-pulse measurements of sap flow in olives for automating irrigation: tests, root flow and diagnostics of water stress. Agricultural Water Management 51, 99–123.
Crossref | GoogleScholarGoogle Scholar | open url image1

Fernández JE, Palomo MJ, Díaz-Espejo A, Girón IF (2003) Influence of partial soil wetting on water relation parameters of the olive tree. Agronomie 23, 545–552.
Crossref | GoogleScholarGoogle Scholar | open url image1

García-Orellana Y, Ruiz-Sánchez MC, Alarcón JJ, Conejero W, Ortuño MF, Nicolás E, Torrecillas A (2007) Preliminary assessment of the feasibility of using maximum daily trunk shrinkage for irrigation scheduling in lemon trees. Agricultural Water Management 89, 167–171.
Crossref | GoogleScholarGoogle Scholar | open url image1

Giorio P, Giorio G (2003) Sap flow of several olive trees estimated with the heat-pulse technique by continuous monitoring of a single gauge. Environmental and Experimental Botany 49, 9–20.
Crossref | GoogleScholarGoogle Scholar | open url image1

Goldhamer DA, Fereres E (2001) Irrigation scheduling protocols using continuously recorded trunk diameter measurements. Irrigation Science 20, 115–125.
Crossref | GoogleScholarGoogle Scholar | open url image1

Goldhamer DA, Fereres E (2004) Irrigation scheduling of almond trees with trunk diameter sensors. Irrigation Science 23, 11–19.
Crossref | GoogleScholarGoogle Scholar | open url image1

Granier A (1987) Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiology 3, 309–320.
PubMed |
open url image1

Green SR (1998) Flow by the heat-pulse method. HortResearch Internal Report 1998/22. HortResearch, Palmerston North, New Zealand.

Green SR, Clothier BE, Jardine B (2003) Theory and practical application of heat-pulse to measure sap flow. Agronomy Journal 95, 1371–1379. open url image1

Green SR, McNaughton KG, Clothier BE (1989) Nocturnal water use by kiwifruit and apples. Agricultural and Forest Meteorology 48, 251–261.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hatfield JL (1983) The utilization of thermal infrared radiation measurements from grain sorghum crops as a method of assessing their irrigation requirements. Irrigation Science 3, 259–268.
Crossref | GoogleScholarGoogle Scholar | open url image1

Holbrook NM, Sinclair TR (1992) Water balance in the arborescent palm, Sabal palmetto. II. Transpiration and stem water storage. Plant, Cell & Environment 15, 401–409.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hoppula KI, Salo TJ (2007) Tensiometer-based irrigation scheduling in perennial strawberry cultivation. Irrigation Science 25, 401–409.
Crossref | GoogleScholarGoogle Scholar | open url image1

Intrigliolo DS, Castel JR (2005) Usefulness of diurnal trunk shrinkage as a water stress indicator in plum trees. Tree Physiology 26, 303–311. open url image1

Intrigliolo DS, Castel JR (2006) Performance of various water stress indicators for prediction of fruit size response to deficit irrigation in plum. Agricultural Water Management 83, 173–180.
Crossref | GoogleScholarGoogle Scholar | open url image1

Jackson RD (1982) Canopy temperature and crop water stress. Advances in Irrigation Research 13, 651–656. open url image1

Jones HG (1999) Use of infrared thermometry for estimation of stomatal conductance as a possible aid to irrigation scheduling. Agricultural and Forest Meteorology 95, 139–149.
Crossref | GoogleScholarGoogle Scholar | open url image1

Jones HG (2004) Irrigation scheduling: advantages and pitfalls of plant-based methods. Journal of Experimental Botany 55, 2427–2436.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Jones HG (2007) Monitoring plant and soil water status: established and novel methods revisited and their relevance to studies of drought tolerance. Journal of Experimental Botany 58, 119–130.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Klein I (2003) Scheduling automatic irrigation by threshold-set soil matrix potential increases irrigation efficiency while minimizing plant stress. In ‘Book of Abstracts, 4th International Symposium on Irrigation of Horticultural Crops, ISHS’. 1–5 September, Davis, CA. p. 72. (University of California: Davis, CA)

Lobo FA, Oliva MA, Resende M, Lopes NF, Maestri M (2004) Infrared thermometry to schedule irrigation of common bean. Pesquisa Agropecuaria Brasileira 39, 113–121. open url image1

Luthra SK, Kaledhonkar MJ, Singh OP, Tyagi NK (1997) Design and development of an auto irrigation system. Agricultural Water Management 33, 169–181.
Crossref | GoogleScholarGoogle Scholar | open url image1

Meiresonne L, Nadezhdin N, Cermak J, van Slycken J, Ceulemans R (1999) Measured sap flow and simulated transpiration from a poplar stand in Flanders (Belgium). Agricultural and Forest Meteorology 96, 165–179.
Crossref | GoogleScholarGoogle Scholar | open url image1

Miranda FR, Yoder RE, Wilkerson JB, Odhiambo LO (2005) An autonomous controller for site-specific management of fixed irrigation systems. Computers and Electronics in Agriculture 48, 183–197.
Crossref | GoogleScholarGoogle Scholar | open url image1

Moreno F, Conejero W, Martín-Palomo MJ, Girón IF, Torrecillas A (2006) Maximum daily trunk shrinkage reference values for irrigation scheduling in olive trees. Agricultural Water Management 84, 290–294.
Crossref | GoogleScholarGoogle Scholar | open url image1

Moreno F, Fernández JE, Clothier BE, Green SR (1996) Transpiration and root water uptake by olive trees. Plant and Soil 184, 85–96.
Crossref | GoogleScholarGoogle Scholar | open url image1

Moriana A, Fereres E (2002) Plant indicators for scheduling irrigation of young olive trees. Irrigation Science 21, 83–90.
Crossref | GoogleScholarGoogle Scholar | open url image1

Nadezhdina N (1999) Sap flow index as an indicator of plant water status. Tree Physiology 19, 885–891.
PubMed |
open url image1

Nadezhdina N, Cermak J (1997) Automatic control unit for irrigation systems based on sensing the plant water status. An. Inst. Sup. Agronom. 46, 149–157. open url image1

Nadler A, Raveh E, Yermiyahu U, Green S (2006) Stress induced water content variations in mango stem by time domain reflectometry. Soil Science Society of America Journal 70, 510–520.
Crossref | GoogleScholarGoogle Scholar | open url image1

Nicolás E, Torrecillas A, Dell’Amico J, Alarcón JJ (2005) The effect of short-term flooding on the sap flow, gas exchange and hydraulic conductivity of young apricot trees. Trees 19, 51–57.
Crossref |
open url image1

Orgaz F , Fereres E (2004) Riego. In ‘El Cultivo del Olivo’. 4th edn (Eds D Barranco, R Fernández-Escobar, L Rallo) pp. 285–306. (Junta de Andalucía and Ediciones Mundi-Prensa: Spain)

Ortuño MF, Alarcón JJ, Nicolás E, Torrecillas A (2004) Interpreting trunk diameter changes in young lemon trees under deficit irrigation. Plant Science 167, 275–280.
Crossref | GoogleScholarGoogle Scholar | open url image1

Ortuño MF, Alarcón JJ, Nicolás E, Torrecillas A (2005) Sap flow and trunk diameter fluctuations of young lemon trees under water stress and rewatering. Environmental and Experimental Botany 54, 155–162.
Crossref | GoogleScholarGoogle Scholar | open url image1

Ortuño MF, Alarcón JJ, Nicolás E, Torrecillas A (2007) Water status indicators of lemon trees in response to flooding and recovery. Biologia Plantarum 51, 292–296.
Crossref | GoogleScholarGoogle Scholar | open url image1

Ortuño MF, García-Orellana Y, Conejero W, Ruiz-Sánchez MC, Alarcón JJ, Torrecillas A (2006a) Stem and leaf water potentials, gas exchange, sap flow, and trunk diameter fluctuations for detecting water stress in lemon trees. Trees 20, 1–8.
Crossref | GoogleScholarGoogle Scholar | open url image1

Ortuño MF, García-Orellana Y, Conejero W, Ruiz-Sánchez MC, Mounzer O, Alarcón JJ, Torrecillas A (2006b) Relationships between climatic variables and sap flow, stem water potential and maximum daily trunk shrinkage in lemon trees. Plant and Soil 279, 229–242.
Crossref | GoogleScholarGoogle Scholar | open url image1

Palomo MJ, Moreno F, Fernández JE, DLaz-Espejo A, Girón IF (2002) Determining waetr consumption in olive orchards using the water balance approach. Agricultural Water Management 55, 15–35.
Crossref | GoogleScholarGoogle Scholar | open url image1

Pelloux G , Lorendeau JY , Huguet JG (1990) Pepista: translation of plants behaviour by the measurement of diameters of stem or fruit as a self-adjusted method for irrigation scheduling. In ‘Proceedings of the 3rd International Congress for Computer Technology’. May 1990, Frankfurt-sur-le-Main, Bad-Soden. pp. 229–235.

Sepulcre-Cantó G, Zarco-Tejada PJ, Jiménez-Muñoz JC, Sobrino JA, Soriano MA, Fereres E, Vega V, Pastor M (2007) Monitoring yield and fruit quality parameters in open-canopy tree crops under water stress. Implications for ASTER. Remote Sensing of Environment 107, 455–470.
Crossref | GoogleScholarGoogle Scholar | open url image1

Thompson RB, Gallardo M, Valdez LC, Fernández MD (2007) Determination of lower limits for irrigation management using in situ assessments of apparent crop water uptake made with volumetric soil water content sensors. Agricultural Water Management 92, 13–28.
Crossref | GoogleScholarGoogle Scholar | open url image1

Velez JE, Intrigliolo DS, Castel JR (2007) Scheduling deficit irrigation of citrus trees with maximum daily shrinkage. Agricultural Water Management 90, 197–204.
Crossref | GoogleScholarGoogle Scholar | open url image1

Williams DG, Cable W, Hultine K, Hoedjes JCB, Yepez EA, , et al . (2004) Evapotranspiration components determined by stable isotope, sap flow and eddy covariance techniques. Agricultural and Forest Meteorology 125, 241–258.
Crossref | GoogleScholarGoogle Scholar | open url image1

Xiloyannis C , Dichio B , Nuzzo V , Celano G (1996) L’olivo: pianta esempio per la sua capacità di resistenza in condizioni di estrema siccità. In ‘Seminari di Olivicoltura. Spoleto’. 7 and 28 June. pp. 79–111.

Zhang H, Morison JIL, Simmonds LP (1999) Transpiration and water relations of poplar trees growing close to the water table. Tree Physiology 19, 563–573.
PubMed |
open url image1










Appendix 1
Click to zoom