Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

Association analyses of polymorphisms in porcine MYF5 and MYOD1 genes with carcass traits

M. Liu A , J. Peng A , D. Q. Xu A , R. Zheng A , F. E. Li A , J. L. Li A , B. Zuo A , M. G. Lei A , Y. Z. Xiong A , C. Y. Deng A and S. W. Jiang A B
+ Author Affiliations
- Author Affiliations

A Agriculture Ministry Key Laboratory of Swine Genetics and Breeding, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China.

B Corresponding author. Email: jiangsiwen@mail.hzau.edu.cn

Australian Journal of Agricultural Research 58(11) 1040-1045 https://doi.org/10.1071/AR06420
Submitted: 25 December 2006  Accepted: 28 June 2007   Published: 26 November 2007

Abstract

The objective of this study was to assess the effect of polymorphisms of myogenic factor 5 (MYF5) and myogenic differentiation 1 (MYOD1) genes on carcass traits in pigs. PCR-RFLP was used to identify three and one SNP(s) from the MYF5 and the MYOD1 gene, respectively. Association analysis performed on the four polymorphisms in a series of three Large White × Meishan F2 populations totalling near 400 pigs showed: (1) an MYF5 exon 1 Hsp92II polymorphism causing a Met→Leu substitution was significantly associated with fat meat percentage, shoulder fat thickness, thorax-waist fat thickness, average backfat thickness and carcass length to 1st rib (P < 0.05); (2) an MYF5 exon 2 MspI polymorphism and an intron 1 HaeIII polymorphism, which were completely linked, were significantly associated with thorax-waist fat thickness, 6–7th rib fat thickness and carcass length to 1st rib (P < 0.05); (3) an MYOD1 intron 1 DdeI polymorphism was significantly associated with carcass length to 1st rib.

Additional keyword: pigs.


Acknowledgments

The project was supported by National Hi-Tech R&D Program of China (863 program, 2006AA10Z140), a China National High Technology R&D Program Grant (No. 2004AA213111) and a China National Key Foundation R&D Program Grant (No. 2006CB102102).


References


Arnold HH, Braun T (1996) Targeted inactivation of myogenic factor genes reveals their role during mouse myogenesis: a review. The International Journal of Developmental Biology 40, 345–353.
PubMed |
open url image1

Beauchamp JR, Heslop L, Yu DS, Tajbakhsh S, Kelly RG, Wernig A, Buckingham ME, Partridge TA, Zammit PS (2000) Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. The Journal of Cell Biology 151, 1221–1234.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Braun T, Arnold HH (1996) Myf-5 and myoD genes are activated in distinct mesenchymal stem cells and determine different skeletal muscle cell lineages. The EMBO Journal 15, 310–318.
PubMed |
open url image1

Braun T, Bober E, Rudnicki MA, Jaenisch R, Arnold HH (1994) MyoD expression marks the onset of skeletal myogenesis in Myf-5 mutant mice. Development 120, 3083–3092.
PubMed |
open url image1

Braun T, Bober E, Winte B, Rosenthal N, Arnold HH (1990) Myf-6, a new member of the human gene family of myogenic determination factors: evidence for a gene cluster on chromosome 12. The EMBO Journal 9, 821–831.
PubMed |
open url image1

Braun T, Buschhausen-Denker G, Bober E, Tannich E, Arnold HH (1989) A novel human muscle factor related to but distinct from MyoD1 induces myogenic conversion in 10T1/2 fibroblasts. The EMBO Journal 8, 701–709.
PubMed |
open url image1

Cieślak D, Kapelański W, Blicharski T, Pierzchała M (2000) Restriction fragment length polymorphisms in myogenin and myf3 genes and their influence on lean meat content in pigs. Journal of Animal Breeding and Genetics 117, 43–55.
Crossref | GoogleScholarGoogle Scholar | open url image1

Cieślak D, Kurył J, Kapelański W, Pierzchała M, Grajewska S, Bocian M (2002) A relationship between genotypes at MYOG, MYF3 and MYF5 loci and carcass meat and fat deposition traits in pigs. Animal Science Papers and Reports 20, 77–92. open url image1

Falconer DS , Mackay TFC (1996) ‘Introduction to quantitative genetics.’ 4th edn. pp. 1–19. (Longman Group: Essex, England)

Fujii J, Otsu K, Zorzato F, de Leon S, Khanna VK, Weiler JE, O’Brien PJ, MacLennan DH (1991) Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science 253, 448–451.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Gerbens F, Jansen A, van Erp AJ, Harders F, Meuwissen TH, Rettenberger G, Veerkamp JH, te Pas MF (1998) The adipocyte fatty acid-binding protein locus: characterization and association with intramuscular fat content in pigs. Mammalian Genome 9, 1022–1026.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Grant AL, Gerrard DE (1998) Cellular and molecular approaches for altering muscle growth and development. Canadian Journal of Animal Science 78, 493. open url image1

Harlizius B , van der Lende T (2001) Contribution of genomics to unravel the physiological background of economically important traits in livestock. In ‘Proceedings of 52nd Annual Meeting of the EAAP’. Budapest. pp. 1–12.

Hughes SM, Chi MM, Lowry OH, Gundersen K (1999) Myogenin induces a shift of enzyme activity from glycolytic to oxidative metabolism in muscles of transgenic mice. The Journal of Cell Biology 145, 633–642.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Knoll A, Nebola M, Dvorak J, Cepica S (1997) Detection of a DdeI PCR RFLP within intron 1 of the porcine MYOD1 (MYF3) locus. Animal Genetics 28, 321.
PubMed |
open url image1

Kurył J, Kapelański W, Cieślak D, Pierzchała M, Grajewska S, Bocian M (2002) Are polymorphisms in non-coding regions of porcine MYOD genes suitable for predicting meat and fat deposition in the carcass? Animal Science Papers and Reports 20, 245–254. open url image1

Leach LM, Ellis M, Sutton DS, McKeith FK, Wilson ER (1996) The growth performance, carcass characteristics, and meat quality of halothane carrier and negative pigs. Journal of Animal Science 74, 934–943.
PubMed |
open url image1

Le Roy P, Naveau J, Elsen JM, Sellier P (1990) Evidence for a new major gene influencing meat quality in pigs. Genetical Research 55, 33–40.
PubMed |
open url image1

Liu BH (1998) ‘Statistical genomics: linkage, mapping and QTL analysis.’ (CRC Press: LLC)

Malek M, Dekkers JC, Lee HK, Baas TJ, Prusa K, Huff-Lonergan E, Rothschild MF (2001) A molecular genome scan analysis to identify chromosomal regions influencing economic traits in the pig. II. Meat and muscle composition. Mammalian Genome 12, 637–645.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Murre C, McCaw PS, Vaessin H, Caudy M, Jan LY , et al. (1989) Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell 58, 537–544.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Rothschild MF (1998) Identification of quantitative trait loci and interesting candidate genes in the pig: progress and prospect. Proceeding of 6th World Congress Genetic Applied in Livestock Production 26, 403–409. open url image1

Rothschild MF, Jacobscon C, Vaske D, Tuggle C, Wang L , et al. (1996) The estrogen receptor locus is associated with a major gene influencing litter size in pigs. Proceedings of the National Academy of Sciences of the United States of America 93, 201–205.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Rudnicki MA, Braun T, Hinuma S, Jaenisch R (1992) Inactivation of MyoD in mice leads to up-regulation of the myogenic HLH gene Myf-5 and results in apparently normal muscle development. Cell 71, 383–390.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Rudnicki MA, Schnegelsberg PN, Stead RH, Braun T, Arnold HH, Jaenisch R (1993) MyoD or Myf-5 is required for the formation of skeletal muscle. Cell 75, 1351–1359.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Soumillion A, Rettenberger G, Vergouwe MN, Erkens JH, Lenstra JA, te Pas MF (1997) Assignment of the porcine loci for MYOD1 to chromosome 2 and MYF5 to chromosome 5. Animal Genetics 28, 37–38.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Stratil A, Cepica S (1999) Three polymorphisms in the porcine myogenic factor 5 (MYF5) gene detected by PCR-RFLP. Animal Genetics 30, 79–80.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

te Pas MFW, Harders FL, Soumillion A, Born L, Buist W, Meuwissen TH (1999) Genetic variation at the porcine MYF-5 gene locus. Lack of association with meat production traits. Mammalian Genome 10, 123–127.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

te Pas MFW, Soumillion A (2001) Improvement of livestock breeding strategies using physiologic and functional genomic information of the muscle regulatory factors gene family for skeletal muscle development. Current Genomics 2, 285–304.
Crossref | GoogleScholarGoogle Scholar | open url image1

Urbanski P, Kurył J (2004) New SNPs in the coding and 5′ flanking regions of porcine MYOD1 (MYF3) and MYF5 genes. Journal of Applied Genetics 45, 325–329.
PubMed |
open url image1

Weintraub H, Davis R, Tapscott S, Thayer M, Krause M, Benezra R, Blackwell TK, Turner D, Rupp R, Hollenberg S (1991) The MYOD gene family: nodal point during specification of the muscle cell lineage. Science 251, 761–766.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Xiong YZ , Deng CY (1999) ‘Principle and method of swine testing.’ (Chinese Agriculture Press: Beijing)

Zammit PS, Carvajal JJ, Golding JP, Morgan JE, Summerbell D, Zolnerciks J, Partridge TA, Rigby PW, Beauchamp JR (2004) Myf5 expression in satellite cells and spindles in adult muscle is controlled by separate genetic elements. Developmental Biology 273, 454–465.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1