Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
PREFACE

Preface to Special Issue: Complex traits and plant breeding—can we understand the complexities of gene-to-phenotype relationships and use such knowledge to enhance plant breeding outcomes?

Mark Cooper A D and Graeme L. Hammer B C
+ Author Affiliations
- Author Affiliations

A Pioneer Hi-Bred International Inc., 7250 N. W. 62nd Avenue, PO Box 552, Johnston, IA 50131, USA.

B Agricultural Production Systems Research Unit, School of Land and Food Sciences, The University of Queensland, Brisbane, Qld 4072, Australia.

C Agricultural Production Systems Research Unit, Queensland Department of Primary Industries and Fisheries, Toowoomba, Qld 4350, Australia.

D Corresponding author. Email: Mark.Cooper@pioneer.com

Australian Journal of Agricultural Research 56(9) 869-872 https://doi.org/10.1071/AR05151
Submitted: 9 May 2005  Accepted: 20 June 2005   Published: 28 September 2005

Additional keywords: modelling, prediction, epistasis, pleiotropy, interaction.


References


Allard, RW (1999). ‘Principles of plant breeding.’ 2nd edn . (John Wiley & Sons, Inc.: Brisbane, Qld)

Axelrod, R ,  and  Cohen, MD (1999). ‘Harnessing complexity organizational implications of a scientific frontier’ (The Free Press: New York)

Cahill DJ, Schmidt DH (2004) Use of marker assisted selection in a product development breeding program. In ‘Proceedings of the 4th International Crop Science Congress’. 26 Sept.–1 Oct. 2004, Brisbane, Australia. Invited Symposium Paper: ‘New Directions for a Diverse Planet’. (CD-ROM, Web site: http://www.w3.org/1999/xlink)
http://www.w3.org/1999/xlink

Comstock, RE (1996). ‘Quantitative genetics with special reference to plant and animal breeding.’ (Iowa State University Press: Ames, IA)

Comstock RE, Robinson HF, Harvey PH (1949) A procedure designed to make maximum use of both general and specific combining ability. Agronomy Journal 41, 360–367. open url image1

Cooper M, Chapman SC, Podlich DW, Hammer GL (2002) The GP problem: quantifying gene-to-phenotype relationships. In Silico Biology 2, 151–164.
PubMed |
open url image1

Cooper M, Hammer GL (1996) Synthesis of strategies for crop improvement. In ‘Plant adaptation and crop improvement’. (Eds M Cooper, GL Hammer) pp. 591–623. (CAB International, ICRISAT & IRRI: Wallingford, UK)

Cooper M, Podlich DW, Smith OS (2004) Complex traits and gene to phenotype models. In ‘Proceedings of the 4th International Crop Science Congress’. 26 Sept.–1 Oct. 2004, Brisbane, Australia. Invited Symposium Paper: ‘New Directions for a Diverse Planet’. (CD-ROM, Web site: http://www.w3.org/1999/xlink)
http://www.w3.org/1999/xlink

Cooper M, Podlich DW, Smith OS (2005) Gene-to-phenotype models and complex trait genetics. Australian Journal of Agricultural Research 56, 895–918. open url image1

Coors JG (1999) Selection methodologies and heterosis. In ‘The genetics and exploitation of heterosis in crops’. (Eds JG Coors, S Pandey) pp. 225–245. (ASA-CSSA-SSSA: Madison, WI)

Duvick DN, Smith JSC, Cooper M (2004) Long-term selection in a commercial hybrid maize breeding program. Plant Breeding Reviews 24, 109–151. open url image1

van Eeuwijk FA, Malosetti M, Yin X, Struik PC, Stam P (2005) Statistical models for genotype by environment data: from conventional ANOVA models to eco-physiological QTL models. Australian Journal of Agricultural Research 56, 883–894. open url image1

Falconer, DS (1960). ‘Introduction to quantitative genetics.’ (Oliver and Boyd Oliver and Boyd:: Edinburgh, UK)

Falconer, DS ,  and  Mackay, TFC (1996). ‘Introduction to quantitative genetics.’ 4th edn . (Longman: Essex, UK)

Fehr, WR (Ed.) (1984). ‘Genetic contributions to yield gains of five major crop plants.’ CSSA Special Publication No. 7. (Crop Science Society of America: Madison, WI)

Hallauer, AR ,  and  Miranda, JB (1988). ‘Quantitative genetics in maize breeding.’ 2nd edn . (Iowa State University Press: Ames, IA)

Hammer GL, Chapman S, van Oosterom E, Podlich DW (2005) Trait physiology and crop modelling as a framework to link phenotypic complexity to underlying genetic systems. Australian Journal of Agricultural Research 56, 947–960. open url image1

Hammer GL, Kropff MJ, Sinclair TR, Porter JR (2002) Future contributions of crop modelling—from heuristics and supporting decision-making to understanding genetic regulation and aiding crop improvement. European Journal of Agronomy 18, 15–31.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hanson, WD ,  and  Robinson, HF (1963). ‘Statistical genetics and plant breeding.’ Publication 982 (National Academy of Sciences – National Research Council: Washington, DC)

Ideker T, Thorsson V, Ranish JA, Christmas R, Buhler J, Eng JK, Bum-garner R, Goodlett DR, Aebersold R, Hood L (2001) Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292, 929–934.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Kearsey, MJ ,  and  Pooni, HS (1996). ‘The genetical analysis of quantitative traits.’ (Chapman and Hall: London)

Kuhn, TS (1996). ‘The structure of scientific revolutions.’ 3rd edn . (The University of Chicago Press: Chicago, IL)

Lynch, M ,  and  Walsh, B (1998). ‘Genetics and analysis of quantitative traits.’ (Sinauer Associates, Inc.: Sunderland, MA)

Mather, K ,  and  Jinks, JL (1971). ‘Biometrical genetics.’ 2nd edn . (Chapman and Hall Ltd: London)

Niebur WS, Rafalski JA, Smith OS, Cooper M (2004) Applications of genomics technologies to enhance rate of genetic progress for yield of maize within a commercial breeding program. Invited Symposium Paper: ‘New Directions for a Diverse Planet’. ‘New Directions for a Diverse Planet’. In ‘Proceedings of the 4th International Crop Science Congress’. 26 Sept.–1 Oct. 2004, Brisbane, Australia. (CD-ROM, Web site: http://www.w3.org/1999/xlink)
http://www.w3.org/1999/xlink

Reymond M, Muller B, Leonardi A, Charcosset A, Tardieu F (2003) Combining quantitative trait loci analysis and an ecophysiological model to analyse the genetic variability of the responses of leaf growth to temperature and water deficit. Plant Physiology 131, 664–675.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Sinclair TR, Seligman NG (1996) Crop modelling: from infancy to maturity. Agronomy Journal 88, 698–704. open url image1

Sing CF, Stengård JH, Kardia SLR (2003) Genes, environment, and cardiovascular disease. Arteriosclerosis, Thrombosis, and Vascular Biology 23, 1190–1196.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Strohman RC (1997) The coming Kuhnian revolution in biology. Nature Biotechnology 15, 194–200.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Tardieu F (2003) Virtual plants: modelling as a tool for the genomics of tolerance to water deficit. Trends in Plant Science 8, 9–14.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Tardieu F, Reymond M, Muller B, Granier C, Simonneau T, Sadok W, Welcker C (2005) Linking physiological and genetic analyses of the control of leaf growth under changing environmental conditions. Australian Journal of Agricultural Research 56, 937–946. open url image1

Walsh B (2005) The struggle to exploit non-additive variation. Australian Journal of Agricultural Research 56, 873–881. open url image1

Welch SM, Dong Z, Roe JL, Das S (2005) Flowering time control: gene network modelling and the link to quantitative genetics. Australian Journal of Agricultural Research 56, 919–936. open url image1

Yin X, Struik PC, Kropff MJ (2004) Role of crop physiology in predicting gene-to-phenotype relationships. Trends in Plant Science 9, 426–432.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1