Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

Effect of nisin on ruminal methane production and nitrate/nitrite reduction in vitro

C. Sar A , B. Mwenya A , B. Pen A , R. Morikawa A , K. Takaura A , T. Kobayashi A and J. Takahashi A B
+ Author Affiliations
- Author Affiliations

A Department of Animal Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan.

B Corresponding author. Email: junichi@obihiro.ac.jp

Australian Journal of Agricultural Research 56(8) 803-810 https://doi.org/10.1071/AR04294
Submitted: 29 November 2004  Accepted: 16 June 2005   Published: 25 August 2005

Abstract

The suppressing effects of different concentrations of nitrate (0, 5, 10, 15, and 20 mm) or nisin (0, 5, 10, 15, 20, and 30 μmol/L) on in vitro methane production were examined with mixed rumen microbes using the in vitro continuous incubation system. The effects of different concentrations of nisin (10, 20, and 30 μmol/L) on in vitro nitrate/nitrite reduction were examined for methane suppression without any nitrate toxicity. The culture mixture consisted of 400 mL of strained rumen fluid from 2 non-lactating Holstein cows fed a diet of oaten hay, alfalfa hay cube, and concentrates (35 : 35 : 30) at maintenance level, and 400 mL of autoclaved buffer solution. Methane production was decreased with increasing levels of nitrate. As the concentration of nisin increased from 5 to 30 μmol/L, methane production was decreased by 14–40%. A decrease in acetate to propionate ratio and increase in total volatile fatty acids were observed as the concentration of nisin increased. Toxic nitrite accumulation was unaffected by increasing levels of nisin. In conclusion, nisin improved some of the parameters of ruminal fermentation and inhibited methane production, but did not decrease nitrate toxicity when nitrate was used to inhibit methane production.

Additional keywords: nitrite accumulation, rumen.


References


Allison MJ, Reddy CA (1990) Adaptations of gastrointestinal bacteria in response to changes in dietary oxalate and nitrate. Veterinary and Human Toxicology 32, 248–256. open url image1

Anderson RC, Rasmussen MA (1998) Use of a novel nitrotoxin-metabolizing bacterium to reduce ruminal methane production. Bioresource Technology 64, 89–95.
Crossref | GoogleScholarGoogle Scholar | open url image1

AOAC (1995). ‘Official methods of analysis.’ 16th edn . (Association of Official Analytical Chemists: Arlington, VA)

Breukink E, Kruijff BD (1999) The lantibiotic nisin, a special case or not? Biochimica et Biophysica Acta 1462, 223–234.
PubMed |
open url image1

Callaway TR, Carneiro De Melo AMS, Rusell JB (1997) The effect of nisin and monensin on ruminal fermentations in vitro. Current Microbiology 35, 90–96.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Callaway TR, Martin SA (1989) Effects of organic acid and monensin treatment on in vitro mixed ruminal microorganism fermentation of cracked corn. Journal of Animal Science 74, 1982–1989. open url image1

Delves-Broughton J, Blackburn P, Evans RJ, Hugenholtz J (1996) Applications of the bacteriocin nisin. Antonie van Leeuwenhoek 69, 193–202.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Farra PA, Satter LD (1971) Manipulation of the ruminal fermentation. III Effects of nitrate on ruminal volatile fatty acid production and milk composition. Journal of Dairy Science 54, 1018–1024. open url image1

Hammes WP, Winter J, Kandler O (1979) Sensitivity of the pseudomurein-containing genus Methanobacterium to inhibitors of murein synthesis. Archives of Microbiology 123, 275–279.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hartley HO (1961) The modified Gauss-Newton method for the fitting of non-linear regression functions by least squares. Technometrics 3, 269–280. open url image1

Iwamoto M, Asanuma N, Hino T (2002) Ability of Selenomonas ruminantium, Veillonella parvula, and Wolinella succinogenes to reduce nitrate and nitrite with special reference to the suppression of ruminal methanogenesis. Anaerobe 8, 209–215.
Crossref | GoogleScholarGoogle Scholar | open url image1

Jalč D, Lauková A (2002) Effect of nisin and monensin on rumen fermentation in artificial rumen. Berliner und Munchener Tierarztliche Wochenschrift 115, 6–10.
PubMed |
open url image1

Johnson KA, Johnson DE (1995) Methane emission from cattle. Journal of Animal Science 73, 2483–2492.
PubMed |
open url image1

Kisidayova S, Siroka P, Lauková A (2003) Effect of nisin on two cultures of rumen ciliates. Folio Microbiologica 48, 408–412. open url image1

Klieve AV, Hegarty RS (1999) Opportunities for biological control of ruminal methanogenesis. Australian Journal of Agricultural Research 50, 1315–1319.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lewis D (1951) The metabolism of nitrate and nitrite in the sheep. I- The reduction of nitrate in the rumen of the sheep. Biochemical Journal 48, 175–180. open url image1

López S, Valdés C, Newbold CJ, Wallace RJ (1999) Influence of sodium fumarate addition on rumen fermentation in vitro. The British Journal of Nutrition 81, 59–64.
PubMed |
open url image1

McAllister TA, Okine EK, Mathison GW, Cheng KJ (1996) Dietary, environmental and microbiological aspects of methane production in ruminants. Canadian Journal of Animal Science 76, 231–243. open url image1

McDougall EI (1948) Studies on ruminant saliva. I. The composition and output of sheep’s saliva. Biochemical Journal 43, 99–109. open url image1

Mwenya B, Santoso B, Sar C, Gamo Y, Kobayashi T, Arai I, Takahashi J (2004) Effects of including β1-4 galacto-oligosaccharides, lactic acid bacteria or yeast culture on methanogenesis as well as energy and nitrogen metabolism in sheep. Animal Feed Science and Technology 115, 313–326.
Crossref | GoogleScholarGoogle Scholar | open url image1

Nakamura Y, Tada Y, Saito T, Yoshida J, Nakamura R (1981) Nitrate metabolism of microorganisms in the rumen of sheep fed high nitrate Italian ryegrass silage. The Japanese Journal of Zootechnical Science 52, 512–518. open url image1

Newbold CJ, Lassalas B, Jouany JP (1995) The importance of methanogenesis associated with ciliate protozoa in ruminal methane production in vitro. Letters in Applied Microbiology 21, 230–234.
PubMed |
open url image1

Orskov ER (1977) Relative importance of ruminal and postruminal digestion with respect to protein and energy nutrition in ruminants. Tropical Animal Health and Production 3, 91–103. open url image1

Paul Ross R, Morgan S, Hill C (2002) Preservation and fermentation: past, present and future. International Journal of Food Microbiology 79, 3–16.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Santoso B, Mwenya B, Sar C, Gamo Y, Kobayashi T, Morikawa R, Kimura K, Mizukoshi H, Takahashi J (2004) Effects of supplementing galacto-oligosaccharides, Yucca schedigera or nisin on rumen methanogenesis, nitrogen and energy metabolism in sheep. Livestock Production Science 91, 209–217.
Crossref | GoogleScholarGoogle Scholar | open url image1

Sar C, Santoso B, Gamo Y, Kobayashi T, Shiozaki S, Kimura K, Mizukoshi H, Arai I, Takahashi J (2004a) Effects of combination of nitrate with β1-4 galacto-oligosaccharides and yeast (Candida kefyr) on methane emission from sheep. Asian-Australasian Journal of Animal Science 17, 73–79. open url image1

Sar C, Santoso B, Mwenya B, Gamo Y, Kobayashi T, Morikawa R, Kimura K, Mizukoshi H, Takahashi J (2004b) Manipulation of rumen methanogenesis by the combination of nitrate with β1-4 galacto-oligosaccharides or nisin in sheep. Animal Feed Science and Technology 115, 129–142.
Crossref | GoogleScholarGoogle Scholar | open url image1

Sar C, Santoso B, Mwenya B, Morikawa R, Isogai N, Asakura Y, Toride Y, Takahashi J (2005) Effect of Escherichia coli W3110 on ruminal methanogenesis and nitrate/nitrite reduction in vitro.  Animal Feed Science and Technology 118, 295–306.
Crossref | GoogleScholarGoogle Scholar | open url image1

Sar C, Santoso B, Zhou XG, Gamo Y, Koyama A, Kobayashi T, Shiozaki S, Takahashi J (2002) Effects of β1-4 galacto-oligosaccharide (GOS) and Candida kefyr on nitrate-induced methaemoglobinemia and methane emission in sheep. ‘Greenhouse gases and animal agriculture’. (Eds J Takahashi, BA Young) pp. 179–183. (Elsevier: Amsterdam, The Netherlands)

SAS/STAT (1994). ‘User’s guide: Statistics.’ 4th edn . (SAS Inst. Inc.: Cary, NC)

Takahashi J (1989) Effect of nitrate content of forage on the production of volatile fatty acids by sheep rumen microbes in in vitro. Japanese Journal of Zootechnical Science 60, 476–483. open url image1

Takahashi J, Young BA (1991) Prophylactic effect of L-cysteine on nitrate-induced alteration in respiratory exchange and metabolic rate in sheep. Animal Feed Science and Technology 35, 105–113.
Crossref | GoogleScholarGoogle Scholar | open url image1

Takahashi J, Ikeda M, Matsuoka S, Fujita H (1998) Prophylactic effect of L-cysteine to acute and subclinical nitrate toxicity in sheep. Animal Feed Science and Technology 74, 273–280.
Crossref | GoogleScholarGoogle Scholar | open url image1

Van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74, 3583–3597.
PubMed |
open url image1

Wimpenny JWT, Cole AJ (1967) Regulation of metabolism in facultative bacteria: the effect of nitrate. Biochemical Journal Abstr. 103, 20. open url image1