Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

Sulfur amino acid metabolism in the whole body and mammary gland of the lactating Saanen goat

J. Lee, R. J. Knutson, S. R. Davis, K. Louie, D. D. S. Mackenzie and P. M. Harris

Australian Journal of Agricultural Research 50(3) 413 - 424
Published: 1999

Abstract

Five multiparous Saanen goats in late lactation were infused with 35S-cysteine into the mammary gland via the external pudic artery. A further 2 goats were infused with 35S-methionine via the same artery and later with 35S-methionine into the jugular vein. Total uptake of cysteine from the arterial blood supply by the mammary gland was approximately 6% of the 35S-cysteine flux past the gland, whereas uptake of methionine was 30–40%. Total mammary uptake of cysteine was also lower than that of methionine when expressed as a percentage of whole body utilisation (6.5 and 14%, respectively). The uptake from the blood did not account for output in the milk for either cysteine or methionine. Both amino acids were highly conserved by the gland as shown by little release of any degraded constitutive protein amino acids and no evidence of oxidation products of either cysteine or methionine being released into the blood. Comparison of 35S activity in the milk from the infused and non-infused sides of the gland showed up to 10% trans-sulfuration of methionine to cysteine within the gland, none of which was exported in the venous drainage. Total ATP production by one side of the gland was 12.1 mol/day or 13 mmol/min.kg mammary tissue, of which 15% was required for gland protein synthesis. The experimental measurements from both the cysteine and methionine infusions were used to solve a model of gland amino acid uptake and partitioning. Modelling radioactivity of both amino acids in the blood, intracellular free pool, and milk protein suggested that a single intracellular pool cannot be the only source of amino acid for protein synthesis. The model also provides support for the hypothesis that a significant proportion of the uptake of at least some amino acids by the mammary gland is from intracellular hydrolysis of extracellularly derived peptides.

Keywords: sulfur amino acids, methionine, cysteine, milk protein, model.

https://doi.org/10.1071/A97149

© CSIRO 1999

Committee on Publication Ethics


Export Citation Get Permission

View Dimensions