Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Simple and modestly scalable synthesis of iso-Cyrene from levoglucosenone and its comparison to the bio-derived and polar aprotic solvent Cyrene®

Xin Liu A # , Brett Pollard A # , Martin G. Banwell https://orcid.org/0000-0002-0582-475X A B * , Li-Juan Yu A , Michelle L. Coote A , Michael G. Gardiner A , Barbara M. A. van Vugt-Lussenburg C , Bart van der Burg C , Fabien L. Grasset D , Elisabeth Campillo D , James Sherwood E , Fergal P. Byrne E and Thomas J. Farmer E
+ Author Affiliations
- Author Affiliations

A Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia.

B Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou, 510632, China.

C BioDetection Systems bv, Science Park 406, 1098XH Amsterdam, The Netherlands.

D V. Mane Fils, 620 route de Grasse, 06620 Le-Bar-sur-Loup, France.

E Green Chemistry Centre of Excellence, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.

* Correspondence to: mgbanwell@jnu.edu.cn

Handling Editor: Craig Hutton

Australian Journal of Chemistry 75(5) 331-344 https://doi.org/10.1071/CH22046
Submitted: 28 February 2022  Accepted: 29 March 2022   Published: 7 July 2022

© 2022 The Author(s) (or their employer(s)). Published by CSIRO Publishing.

Abstract

The bio-derived platform molecule levoglucosenone (LGO, 1), which is the precursor to the green solvent Cyrene® (2), has been converted, at multi-gram scale, into its pseudo-enantiomer (iso-LGO, 2) and then reduced to iso-Cyrene (4). A less effective synthesis of this last compound from D-glucose is also described. Various physicochemical as well as certain toxicological properties of compound 4 are reported and compared to those established for the now commercially available Cyrene® (2). Such studies reveal that there are significant enough differences in the properties of the sustainably-derived Cyrene® (2) and isomer 4 (iso-Cyrene) to suggest they will exert complementary effects as solvents in a range of settings.

Keywords: bio-derived, Cyrene®, green solvent, iso-Cyrene, iso-levoglucosenone, levoglucosenone, physiochemical properties, toxicity.


References

[1]  (a) YL Gu, F Jerome,, Chem Soc Rev 2013, 42, 9550.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) CJ Clarke, W-C Tu, O Levers, A Bröhl, JP Hallett, Chem Rev 2018, 118, 747.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) A Jordan, CGJ Hall, LR Thorp, HF Sneddon, Chem Rev 122, 6749.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  J Sherwood, M De bruyn, A Contantinou, L Moity, CR McElroy, TJ Farmer, T Duncan, W Raverty, AJ Hunt, JH Clark, Chem Commun 2014, 50, 9650.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  (a) AAC Pacheco, J Sherwood, A Zhenova, CR McElroy, AJ Hunt, HL Parket, TJ Farmer, A Constantinou, M De bryun, AC Whitwood, W Raverty, JH Clark, ChemSusChem 2016, 9, 3503.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) Also, see: RA Milescu, A Zhenova, M Vastano, R Gammons, S Lin, CH Lau, JH Clark, CR McElroy, A Pellis, ChemSusChem 2021, 14, 3367.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  JE Camp, ChemSusChem 2018, 11, 3048.
         | Crossref | GoogleScholarGoogle Scholar | 30044553PubMed |

[5]  Cyrene (TM). Circa Group. Available at https://www.circagroup.com.au/cyrene [Accessed 26 February 2022].

[6]  (a) J Zhang, GB White, MD Ryan, AJ Hunt, MJ Katz, ACS Sustainable Chem Eng 2016, 4, 7186.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) JE Camp, SB Nyamini, FJ Scott, RSC Med Chem 2020, 11, 111.
         | Crossref | GoogleScholarGoogle Scholar |
         (c) Registration dossier, 6,8-dioxabicyclo[3.2.1]octan-4-one, (1S,5R)-. European Chemical Agency (ECHA). Available at https://echa.europa.eu/registration-dossier/-/registered-dossier/16252 [Accessed 26 February 2022].

[7]  X Ma, N Anderson, LV White, S Bae, W Raverty, AC Willis, MG Banwell, Aust J Chem 2015, 68, 593.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  (a) X Ma, X Liu, P Yates, W Rafferty, MG Banwell, C Ma, AC Willis, PD Carr, Tetrahedron 2018, 74, 5000.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) F Diot-Néant, LMM Mouterde, J Couvreur, F Brunois, SA Miller, F Allais, Eur Polym J 2021, 159, 110745.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  (a) J Pecka, J Stanek, M Cerny, Coll Czech Chem Commun 1974, 39, 1192.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) T Ton-That, Nucleosides Nucleotides 1999, 18, 731.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  ET Ledingham, BW Greatrex, Tetrahedron 2018, 74, 6107.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  J Klepp, CJ Sumby, BW Greatrex, Synlett 2018, 29, 1441.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  (a) M De bruyn, VL Budarin, A Misefari, S Shimizu, H Fish, M Crockett, AJ Hunt, H Hofstetter, BM Weckhuysen, JH Clark, DJ Macquarie, ACS Sustainable Chem Eng 2019, 7, 7878.
         | Crossref | GoogleScholarGoogle Scholar | 32953281PubMed |
      (b) TW Bousfield, KPR Pearce, SB Nyamini, A Angelis-Dimakis, J E Green Chem 2019, 21, 3675.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  (a) R-W Rennecke, K Eberstein, P Köll, Chem Ber 1975, 108, 3652.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) F Shafizadeh, RH Furneaux, TT Stevenson, Carbohydr Res 1979, 71, 169.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  LMM Mouterde, F Allais, JD Stewart, Green Chem 2018, 20, 5528.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  (a) F Shafizadeh, RH Furneaux, D Pang, TT Stevenson, Carbohydr Res 1982, 100, 303.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) T Kawai, M Isobe, SC Peters, Aust J Chem 1995, 48, 115.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) AV Samet, ME Niyazymbetov, VV Semenov, AL Laikhter, DH Evans, J Org Chem 1996, 61, 8786.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) BT Sharipov, AN Pilipenko, FA Valeev, Russ J Org Chem 2014, 50, 1628.
      (e) F Diot-Néant, L Mouterde, S Fadlallah, SA Miller, F Allais, ChemSusChem 2020, 13, 2613.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  S Jeon, S Han, J Am Chem Soc 2017, 139, 6302.and references cited therein
         | Crossref | GoogleScholarGoogle Scholar | 28436228PubMed |

[17]  AJ Mancuso, D Swern, Synthesis 1981, 165.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  For examples of the reactions of episulfonium ions with nitrogen-centred nucleophiles see DJ Fox, TJ Morley, S Taylor, S Warren, Org Biomol Chem 2005, 3, 1369.
         | Crossref | GoogleScholarGoogle Scholar | 15827629PubMed |

[19]  D Horton, JP Roski, P Norris, J Org Chem 1996, 61, 3783.
         | Crossref | GoogleScholarGoogle Scholar | 11667230PubMed |

[20]  A single-crystal X-ray analysis of compound 12 has been reported previously although this did not establish, in contrast to the one reported here, its absolute configuration: C Mamat, T Peppel, M Köckerling, Crystals 2012, 2, 105.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  J Cantacuzene, J Petrissane, Dang-Quoc-Quan, Tetrahedron Lett 1967, 2543.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  L Hughes, CR McElroy, AC Whitwood, AJ Hunt, Green Chem 2018, 20, 4423.and references cited therein
         | Crossref | GoogleScholarGoogle Scholar |

[23]  (a) A Klamt, V Jonas, T Bürger, JCW Lohrenz, J Phys Chem A 1998, 102, 5074.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) A Klamt, Wiley Interdiscip Rev: Comput Mol Sci 2018, 8, e1338.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  L Trasande, Lancet Planetary Health 2017, 1, e88.and references cited therein
         | Crossref | GoogleScholarGoogle Scholar | 29851613PubMed |

[25]  AH Piersma, S Bosgra, MBM van Duursen, SAB Hermsen, LRA Jonker, ED Kroese, SC van der Linden, H Man, MJE Roelofs, SHW Schulpen, M Schwarz, F Uibel, BMA van Vugt-Lussenburg, J Westerhout, APM Wolterbeek, B van der Burg, Reprod Toxicol 2013, 38, 53.
         | Crossref | GoogleScholarGoogle Scholar | 23511061PubMed |

[26]  B Schenk, M Weimer, S Bremer, B van der Burg, R Cortvrindt, A Freyberger, G Lazzari, C Pellizzer, A Piersma, WR Schäfer, A Seiler, H Witters, M Schwarz, Reprod Toxicol 2010, 30, 200.
         | Crossref | GoogleScholarGoogle Scholar | 20493943PubMed |

[27]  B van der Burg, B Pieterse, H Buist, G Lewin, SC van der Linden, H-y Man, E Rorije, AH Piersma, I Mangelsdorf, APM Wolterbeek, ED Kroese, B van Vugt-Lussenburg, Reprod Toxicol 2015, 55, 95.
         | Crossref | GoogleScholarGoogle Scholar | 25527862PubMed |

[28]  Burg B, Linden S, Man H, Jonker L, Vugt‐Lussenburg BV, Brouwer A. A Panel of Quantitative Calux® Reporter Gene Assays for Reliable High-Throughput Toxicity Screening of Chemicals and Complex Mixtures. In Steinberg P, editor. High-Throughput Screening Methods in Toxicity Testing. Hoboken, New Jersey, USA: John Wiley & Sons; 2013, pp. 519–532.

[29]  B van der Burg, EB Wedebye, DR Dietrich, J Jaworska, I Mangelsdorf, E Paune, M Schwarz, AH Piersma, ED Kroese, Reprod Toxicol 2015, 55, 114.
         | Crossref | GoogleScholarGoogle Scholar | 25656794PubMed |

[30]  A Krebs,, T Waldmann, MF Wilks, et al. ALTEX 2019, 36, 682.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  A Krebs,, BMA van Vugt-Lussenburg, et al. Arch Toxicol 2020, 94, 2435.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  FP Byrne, CM Nussbaumer, EJ Savin, RA Milescu, CR McElroy, JH Clark, BMA van Vugt-Lussenburg, B van der Burg, MY Meima, HE Buist, ED Kroese, AJ Hunt, TJ Farmer, ChemSusChem 2020, 13, 3212.
         | Crossref | GoogleScholarGoogle Scholar | 32220058PubMed |

[33]  BMA van Vugt-Lussenburg, DS van Es, M Naderman, J le Notre, F van der Klis, A Brouwer, B van der Burg, Green Chem 2020, 22, 1873.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  M Brattoli, E Cisternino, PR Dambruoso, G de Gennaro, P Giungato, A Mazzone, J Palmisiani, M Tutino, Sensors 2013, 13, 16759.
         | Crossref | GoogleScholarGoogle Scholar | 24316571PubMed |

[35]  MG Banwell, B Pollard, X Liu, LA Connal, Chem Asian J 2021, 16, 604.
         | Crossref | GoogleScholarGoogle Scholar | 33463003PubMed |

[36]  WC Still, M Kahn, A Mitra, J Org Chem 1978, 43, 2923.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  AB Pangborn, MA Giardello, RH Grubbs, RK Rosen, FJ Timmers, Organometallics 1996, 15, 1518.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  H Tozuka, M Ota, H Kofujita, K Takahashi, Synthesis of dihydroxyphenacyl glycosides for biological and medicinal study: β-oxoacetoside from Paulownia tomentosa. J Wood Sci 2005, 51, 48.
         | Synthesis of dihydroxyphenacyl glycosides for biological and medicinal study: β-oxoacetoside from Paulownia tomentosa.Crossref | GoogleScholarGoogle Scholar |

[39]  (a) A Nagy, B Csordás, V Zsoldos-Mády, I Pintér, V Farkas, A Perczel, C-3 Epimers of sugar amino acids as foldamer building blocks: improved synthesis, useful derivatives, coupling strategies. Amino Acids 2017, 49, 223.
         | C-3 Epimers of sugar amino acids as foldamer building blocks: improved synthesis, useful derivatives, coupling strategies.Crossref | GoogleScholarGoogle Scholar | 27803987PubMed |
      (b) H Redlich, W-U Meyer, p-Toluosulfinimidazolid als Reagenz zur haloenidfreien Sulfinesterbildung. Liebigs Ann Chem 1981, 1354.
         | p-Toluosulfinimidazolid als Reagenz zur haloenidfreien Sulfinesterbildung.Crossref | GoogleScholarGoogle Scholar |

[40]  P Norris, A Fluxe, Preparation of a D-Glucose-Derived Alkene. J Chem Ed 2011, 78, 1676.
         | Preparation of a D-Glucose-Derived Alkene.Crossref | GoogleScholarGoogle Scholar |

[41]  OV Dolomanov, LJ Bourhis, RJ Gildea, JAK Howard, H Puschmann, OLEX2: a complete structure solution, refinement and analysis program. J Appl Cryst 2009, 42, 339.
         | OLEX2: a complete structure solution, refinement and analysis program.Crossref | GoogleScholarGoogle Scholar |

[42]  GM Sheldrick, ShelXT-Integrated space-group and crystal-structure determination. Acta Cryst 2015, A71, 3.
         | ShelXT-Integrated space-group and crystal-structure determination.Crossref | GoogleScholarGoogle Scholar |

[43]  GM Sheldrick, Crystal structure refinement with SHELXL. Acta Cryst 2015, C71, 3.
         | Crystal structure refinement with SHELXL.Crossref | GoogleScholarGoogle Scholar |

[44]  Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, et al. Gaussian 16 Rev. C.01, Wallingford, CT, 2016.

[45]  T Lu, F Chen, Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 2012, 33, 580.
         | Multiwfn: a multifunctional wavefunction analyzer.Crossref | GoogleScholarGoogle Scholar | 22162017PubMed |

[46]  Dennington R, Keith TA, Millam JM. GaussView, Version 6. Shawnee Mission, KS: Semichem Inc.; 2016.

[47]  Available at https://jeodpp.jrc.ec.europa.eu/ftp/jrc-opendata/EURL-ECVAM/datasets/DBALM/LATEST/online/DBALM_docs/197_P_Automated%20CALUX.pdf [Accessed 30 May 2022]