Thermodynamic Analysis of Tyrosyl-tRNA Synthetases Revealed Bacterial-Selective Tyrosine Derivatives
Zhongqiang Wang A B C D , Hayden Matthews C D , Guozhong Deng A B , Xiaojian Zhou A B and Yongzheng Chen A BA Key Laboratory of Biocatalysis and Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China.
B Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China.
C Research School of Chemistry, Australian National University, 137 Sullivans Creek Road, Acton, ACT 2601, Australia.
D Corresponding authors. Emails: zqwang_go@zmu.edu.cn; Hayden.Matthews@anu.edu.au
Australian Journal of Chemistry 74(10) 740-745 https://doi.org/10.1071/CH21218
Submitted: 1 September 2021 Accepted: 5 October 2021 Published: 2 November 2021
Abstract
The non-proteinogenic amino acids m-fluorotyrosine and 2,4-dihydroxyphenylalanine demonstrated a respective 6- and 12-fold greater binding affinity to the purified tyrosyl-tRNA synthetase from Escherichia coli than that from human cytosol. The differential binding was identified by probing the substrate selectivity of the two enzymes with structural analogues of tyrosine using a thermodynamic technique.
Keywords: tyrosyl-tRNA synthetase, enzyme selectivity, amino acids, species selectivity.
References
[1] (a) N. H. Kwon, P. L. Fox, S. Kim, Nat. Rev. Drug Discov. 2019, 18, 629.| Crossref | GoogleScholarGoogle Scholar | 31073243PubMed |
(b) B. Gadakh, A. Van Aerschot, Expert Opin. Ther. Pat. 2012, 22, 1453.
| Crossref | GoogleScholarGoogle Scholar |
(c) L. P. Pang, S. D. Weeks, A. Van Aerschot, Int. J. Mol. Sci. 2021, 22, 1750.
| Crossref | GoogleScholarGoogle Scholar |
[2] J. Hughes, G. Mellows, Biochem. J. 1978, 176, 305.
| Crossref | GoogleScholarGoogle Scholar | 365175PubMed |
[3] F. L. Rock, W. M. Mao, A. Yaremchuk, M. Tukalo, T. Crépin, H. C. Zhou, Y. K. Zhang, V. Hernandez, T. Akama, S. J. Baker, J. J. Plattner, L. Shapiro, S. A. Martinis, S. J. Benkovic, S. Cusack, M. R. K. Alley, Science 2007, 316, 1759.
| Crossref | GoogleScholarGoogle Scholar | 17588934PubMed |
[4] T. L. Keller, D. Zocco, M. S. Sundrud, M. Hendrick, M. Edenius, J. Yum, Y. J. Kim, H. K. Lee, J. F. Cortese, D. F. Wirth, J. D. Dignam, A. Rao, C. Y. Yeo, R. Mazitschek, M. Whitman, Nat. Chem. Biol. 2012, 8, 311.
| Crossref | GoogleScholarGoogle Scholar | 22327401PubMed |
[5] A. T. Fuller, G. Mellows, M. Woolford, G. T. Banks, K. D. Barrow, E. B. Chain, Nature 1971, 234, 416.
| Crossref | GoogleScholarGoogle Scholar | 5003547PubMed |
[6] (a) B. Wilkinson, M. A. Gregory, S. J. Moss, I. Carletti, R. M. Sheridan, A. Kaja, M. Ward, C. Olano, C. Mendez, J. A. Salas, P. F. Leadlay, R. van Ginckel, M. Q. Zhang, Bioorg. Med. Chem. Lett. 2006, 16, 5814.
| Crossref | GoogleScholarGoogle Scholar | 16962775PubMed |
(b) S. J. Moss, I. Carletti, C. Olano, R. M. Sheridan, M. Ward, V. Math, M. Nur-E-Alam, A. F. Braña, M. Q. Zhang, P. F. Leadlay, C Méndez, J. A. Salas, B Wilkinson, Chem. Commun. 2006, 37, 2341.
| Crossref | GoogleScholarGoogle Scholar |
[7] H. Osada, K. Isono, Antimicrob. Agents Chemother. 1985, 27, 230.
| Crossref | GoogleScholarGoogle Scholar | 2580481PubMed |
[8] P. Van de Vijver, G. H. M. Vondenhoff, T. S. Kazakov, E. Semenova, K. Kuznedelov, A. Metlitskaya, A. V. Aerschot, K. Severinov, J. Bacteriol. 2009, 191, 6273.
| Crossref | GoogleScholarGoogle Scholar | 19684138PubMed |
[9] (a) D. Cassio, F. Lemoine, J. P. Waller, E. Sandrin, R. A. Boissonnas, Biochemistry 1967, 6, 827.
| Crossref | GoogleScholarGoogle Scholar | 4290596PubMed |
(b) A. K. Forrest, R. L. Jarvest, L. M. Mensah, P. J. O’Hanlon, A. J. Pope, R. J. Sheppard, Bioorg. Med. Chem. Lett. 2000, 10, 1871.
| Crossref | GoogleScholarGoogle Scholar |
[10] J. Sun, P. C. Lv, H. L. Zhu, Expert Opin. Ther. Pat. 2017, 27, 557.
| Crossref | GoogleScholarGoogle Scholar | 27977303PubMed |
[11] C. S. Francklyn, P. Mullen, J. Biol. Chem. 2019, 294, 5365.
| Crossref | GoogleScholarGoogle Scholar | 30670594PubMed |
[12] Z. Q. Wang, H. Matthews, RSC Adv. 2020, 10, 11013.
| Crossref | GoogleScholarGoogle Scholar |
[13] (a) M. Ibba, C. Francklyn, S. Cusack, The Aminoacyl-tRNA Synthetases 2005 (Landes Bioscience/Eurekah.com: Georgetown, TX)
(b) M. Ibba, D. Söll, Annu. Rev. Biochem. 2000, 69, 617.
| Crossref | GoogleScholarGoogle Scholar |
(c) C. W. Carter, Annu. Rev. Biochem. 1993, 62, 715.
| Crossref | GoogleScholarGoogle Scholar |
[14] X. L. Yang, F. J. Otero, R. J. Skene, D. E. McRee, P. Schimmel, L. Ribas de Pouplana, Proc. Natl. Acad. Sci. USA 2003, 100, 15376.
| Crossref | GoogleScholarGoogle Scholar | 14671330PubMed |
[15] T. Kobayashi, T. Takimura, R. Sekine, K. Vincent, K. Kamata, K. Sakamoto, S. Nishimura, S. Yokoyama, J. Mol. Biol. 2005, 346, 105.
| Crossref | GoogleScholarGoogle Scholar | 15663931PubMed |
[16] E. L. Bennett, C. Niemann, J. Am. Chem. Soc. 1950, 72, 1806.
| Crossref | GoogleScholarGoogle Scholar |
[17] E. H. Baker, F. C. Tompkins, H. A. Fahim, A. M. Fleifel, F. Bergmann, A. Kalmus, E. Fischer, Y. Hirshberg, H. R. V. Arnstein, E. R. Ward, L. A. Day, R. S. Bradley, W. Tadros, M. Kamel, A. S. Bailey, D. H. Bates, H. R. Ing, M. A. Warne, E. Neale, L. T. D. Williams, H. B. Henbest, A. G. Sharpe, A. H. Lamberton, E. P. Hart, C. A. Bunton, E. A. Halevi, J. P. Thurston, J. Walker, R. A. Robinson, F. G. Mann, B. B. Smith, D. L. Hammick, A. M. Roe, S. Peat, W. J. Whelan, G. J. Thomas, J. Chem. Soc. 1952, 4518.
| Crossref | GoogleScholarGoogle Scholar |
[18] S. Khatib, O. Nerya, R. Musa, M. Shmuel, S. Tamir, J. Vaya, Bioorg. Med. Chem. 2005, 13, 433.
| Crossref | GoogleScholarGoogle Scholar | 15598564PubMed |
[19] J. P. Lambooy, J. Am. Chem. Soc. 1954, 76, 133.
| Crossref | GoogleScholarGoogle Scholar |
[20] T. J. McCord, D. R. Smith, D. W. Winters, J. F. Grimes, K. L. Hulme, L. Q. Robinson, L. D. Gage, A. L. Davis, J. Med. Chem. 1975, 18, 26.
| Crossref | GoogleScholarGoogle Scholar | 803244PubMed |
[21] E. C. Jorgensen, R. A. Wiley, J. Pharm. Sci. 1963, 52, 122.
| Crossref | GoogleScholarGoogle Scholar | 13964912PubMed |
[22] H. Sugimoto, M. Ogata, H. Matsumoto, K. I. Sugita, A. Sato, T. Fujiwara, U.S. Patent 5 326 780 1994.
[23] I. A. McDonald, P. L. Nyce, M. J. Jung, J. S. Sabol, Tetrahedron Lett. 1991, 32, 887.
| Crossref | GoogleScholarGoogle Scholar |
[24] D. Suarez, G. Laval, S. M. Tu, D. Jiang, C. L. Robinson, R. Scott, B. T. Golding, Synthesis 2009, 1807.
| Crossref | GoogleScholarGoogle Scholar |
[25] A. R. Katritzky, Y. J. Xu, A. V. Vakulenko, A. L. Wilcox, K. R. Bley, J. Org. Chem. 2003, 68, 9100.
| Crossref | GoogleScholarGoogle Scholar | 14604387PubMed |
[26] X. L. Yang, R. J. Skene, D. E. McRee, P. Schimmel, Proc. Natl. Acad. Sci. USA 2002, 99, 15369.
| Crossref | GoogleScholarGoogle Scholar | 12427973PubMed |
[27] J. Jia, B. Li, Y. X. Jin, D. B. Wang, Protein Expr. Purif. 2003, 27, 104.
| Crossref | GoogleScholarGoogle Scholar | 12509991PubMed |
[28] R. Jakes, A. R. Fersht, Biochemistry 1975, 14, 3344.
| Crossref | GoogleScholarGoogle Scholar | 1096941PubMed |
[29] A. R. Fersht, J. S. Shindler, W. C. Tsui, Biochemistry 1980, 19, 5520.
| Crossref | GoogleScholarGoogle Scholar | 7006687PubMed |
[30] A. R. Fersht, J. P. Shi, J. Knill-Jones, D. M. Lowe, A. J. Wilkinson, D. M. Blow, P. Brick, P. Carter, M. M. Y. Waye, G. Winter, Nature 1985, 314, 235.
| Crossref | GoogleScholarGoogle Scholar | 3845322PubMed |
[31] A. Bondi, J. Phys. Chem. 1964, 68, 441.
| Crossref | GoogleScholarGoogle Scholar |
[32] B. Brooks, R. S. Phillips, W. F. Benisek, Biochemistry 1998, 37, 9738.
| Crossref | GoogleScholarGoogle Scholar | 9657686PubMed |
[33] P. Brick, D. M. Blow, J. Mol. Biol. 1987, 194, 287.
| Crossref | GoogleScholarGoogle Scholar | 3612807PubMed |
[34] J. Austin, E. A. First, J. Biol. Chem. 2002, 277, 14812.
| Crossref | GoogleScholarGoogle Scholar | 11856731PubMed |