Open samarocene and ytterbocenes and their adducts with N-heterocyclic carbene (NHC) and imidazolin-2-thiones†
Jan Raeder A , Jan H. Jördens A and Marc D. Walter A *A Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany.
Australian Journal of Chemistry 75(9) 636-648 https://doi.org/10.1071/CH21326
Submitted: 6 December 2021 Accepted: 17 January 2022 Published: 9 March 2022
© 2022 The Author(s) (or their employer(s)). Published by CSIRO Publishing.
Abstract
Reaction of the open samarocene [(η5-pdl′)2Sm(thf)2] (1-Sm; pdl′ = 2,4-tBu2C5H5) towards IMes (= 1,3-dimesitylimidazolin-2-ylidene), ItBu (= 1,3-di-tert-butylimidazolin-2-ylidene) and IiPr2Me2 (= 1,3-diisopropyl-4,5-dimethylimidazolin-2-ylidene) forms the corresponding NHC adducts, [(pdl′)2Sm(IMes)] (2-Sm), [(pdl′)2Sm(ItBu)] (3-Sm) and [(pdl′)2Sm(IiPr2Me2)] (4-Sm), respectively in good to excellent yields. Diverging reactivity patterns emerge when we attempted to prepare the related adducts using the open ytterbocene [(pdl′)2Yb(thf)] (1-Yb). Attributed to the smaller ionic radius of YbII no adduct is observed for IMes. However, for the smaller ItBu ligand iso-butene elimination occurs to yield the imidazole YbII adduct (3′-Yb). For the slightly less sterically encumbered IiPr2Me2 two products were isolated, albeit in low yield: [(pdl′)2Yb(IiPr2Me2)] (4-Yb) and [{(pdl′)Yb(IiPr2Me2)(μ-S)}2] (5-Yb). The surprising formation of the μ-sulfido bridged species 5-Yb suggested that this product might result from trace impurities of imidazoline-2-thione originating from the synthesis of IiPr2Me2. To verify this hypothesis the first imidazoline-2-thione adducts in organolanthanide chemistry were prepared by the reaction of 1-Sm and 1-Yb towards S=IMe2Me2 and S=IiPr2Me2, respectively. All of these adducts were structurally authenticated. However, the imidazoline-2-thione adducts slowly degrade in solution with the Yb derivatives being less stable. Analyses of the organic degradation products suggest that reduction of imidazoline-2-thione to imidazoline-2-ylidene can indeed be accomplished by the lanthanide metal (providing one electron) as well as the (pdl′)− ligand (also delivering one electron).
Keywords: open metallocenes, N-heterocyclic carbenes, imidazolin-2-thiones, ytterbium, samarium.
References
[1] (a) G Wilkinson, JM Birmingham, J Am Chem Soc 1954, 76, 6210.| Crossref | GoogleScholarGoogle Scholar |
(b) JM Birmingham, G Wilkinson, J Am Chem Soc 1956, 78, 42.
| Crossref | GoogleScholarGoogle Scholar |
[2] TD Tilley, RA Andersen, B Spencer, H Ruben, A Zalkin, DH Templeton, Inorg Chem 1980, 19, 2999.
| Crossref | GoogleScholarGoogle Scholar |
[3] AL Wayda, WJ Evans, Inorg Chem 1980, 19, 2190.
| Crossref | GoogleScholarGoogle Scholar |
[4] PL Watson, JF Whitney, RL Harlow, Inorg Chem 1981, 20, 3271.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) Walter MD, Nocton G. In: Rainer P, Thomas J, Cristian AS, editors. In Rare Earth Chemistry. De Gruyter; 2020, pp. 201–222
(b) M Tricoire, N Mahieu, T Simler, G Nocton, Chem - Eur J 2021, 27, 6860.
[6] RD Ernst, TH Cymbaluk, Organometallics 1982, 1, 708.
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) H Schumann, JA Meese-Marktscheffel, L Esser, Chem Rev 1995, 95, 865.
| Crossref | GoogleScholarGoogle Scholar |
(b) For the most recent annual survey covering the develpments in organolanthanide and -actinide chemistry published in 2019 see: JH Farnaby, T Chowdhury, SJ Horsewill, B Wilson, F Jaroschik, Coord Chem Rev 2021, 437, 213830.
| Crossref | GoogleScholarGoogle Scholar |
[8] (a) N Hu, L Gong, Z Jin, W Chen, Wuji Huaxue Xuebao 1989, 5, 107.
(b) J Sieler, A Simon, K Peters, R Taube, M Geitner, J Organomet Chem 1989, 362, 297.
| Crossref | GoogleScholarGoogle Scholar |
(c) X Cai, L Gong, W Chen, Yingyong Huaxue 1991, 8, 21.
(d) X Qiu, J Liu, Chin J Chem 1991, 9, 10.
| Crossref | GoogleScholarGoogle Scholar |
(e) H Schumann, A Dietrich, J Organomet Chem 1991, 401, C33.
| Crossref | GoogleScholarGoogle Scholar |
(f) J Jin, S Jin, Z Jin, W Chen, Jiegou Huaxue 1992, 11, 109.
(g) K Kunze, AM Arif, RD Ernst, Bull Soc Chim Fr 1993, 130, 708.
(h) D Baudry, F Nief, L Ricard, J Organomet Chem 1994, 482, 125.
| Crossref | GoogleScholarGoogle Scholar |
(i) S Zhang, J Jin, G Wei, W Chen, J Liu, J Organomet Chem 1994, 483, 57.
| Crossref | GoogleScholarGoogle Scholar |
(j) S-b Zhang, J-z Liu, G-c Wei, H-q Jia, W-q Chen, Chem Res Chin Univ 1994, 10, 308.
(k) MB Zielinski, DK Drummond, PS Iyer, JT Leman, WJ Evans, Organometallics 1995, 14, 3724.
| Crossref | GoogleScholarGoogle Scholar |
(l) S Zhang, X Zhuang, J Zhang, W Chen, J Liu, J Organomet Chem 1999, 584, 135.
| Crossref | GoogleScholarGoogle Scholar |
(m) J-H Wang, Y Mu, Z Shi, S-B Zhang, S-H Feng, Gaodeng Xuexiao Huaxue Xuebao 2000, 21, 829.
(n) S-b Zhang, D-m Chui, J-h Cheng, J-z Jin, N-h Hu, W-q Chen, J-z Liu, Yingyong Huaxue 2001, 18, 330.
(o) MR Kunze, R Taube, Z Anorg Allg Chem 2010, 636, 2454.
| Crossref | GoogleScholarGoogle Scholar |
(p) S-b Zhang, J-z Liu, X-l Zhuang, J-q Huang, N-h Hu, W-q Chen, Chem Res Chin Univ 2001, 17, 14.
(q) S Maiwald, C Sommer, G Mpller, R Taube, Macromol Chem Phys 2001, 202, 1446.
| Crossref | GoogleScholarGoogle Scholar |
(r) A Li, J Wang, C Zheng, JA Maguire, NS Hosmane, Organometallics 2004, 23, 3091.
| Crossref | GoogleScholarGoogle Scholar |
(s) MR Kunze, D Steinborn, K Merzeriler, C Wagner, J Sieler, R Taube, Z Anorg Allg Chem 2007, 633, 1451.
| Crossref | GoogleScholarGoogle Scholar |
(t) MR Kunze, J Sieler, R Taube, Z Anorg Allg Chem 2008, 634, 1045.
| Crossref | GoogleScholarGoogle Scholar |
(u) BM Day, NF Chilton, RA Layfield, Dalton Trans 2015, 44, 7109.
| Crossref | GoogleScholarGoogle Scholar |
(v) J Raeder, M Reiners, R Baumgarten, K Münster, D Baabe, M Freytag, PG Jones, MD Walter, Dalton Trans 2018, 47, 14468.
| Crossref | GoogleScholarGoogle Scholar |
(w) D Barisic, DA Buschmann, D Schneider, C Maichle-Moessmer, R Anwander, Chem - Eur J 2019, 25, 4821.
| Crossref | GoogleScholarGoogle Scholar |
(x) D Barisic, J Lebon, C Maichle-Moessmer, R Anwander, Chem Commun 2019, 55, 7089.
| Crossref | GoogleScholarGoogle Scholar |
(y) D Barisic, D Schneider, C Maichle-Moessmer, R Anwander, Angew Chem, Int Ed 2019, 58, 1515.
| Crossref | GoogleScholarGoogle Scholar |
(z) AC Fecker, M Freytag, PG Jones, MD Walter, Dalton Trans 2019, 48, 8297.
| Crossref | GoogleScholarGoogle Scholar |
({) K Münster, AC Fecker, J Raeder, M Freytag, PG Jones, MD Walter, Chem - Eur J 2020, 26, 16098.
| Crossref | GoogleScholarGoogle Scholar |
(|) K Münster, J Raeder, MD Walter, Dalton Trans 2022, 51, 986.
| Crossref | GoogleScholarGoogle Scholar |
[9] AJ Arduengo, M Tamm, SJ McLain, JC Calabrese, F Davidson, WJ Marshall, J Am Chem Soc 1994, 116, 7927.
| Crossref | GoogleScholarGoogle Scholar |
[10] H Schumann, M Glanz, J Winterfeld, H Hemling, N Kuhn, T Kratz, Angew Chem, Int Ed Engl 1994, 33, 1733.
| Crossref | GoogleScholarGoogle Scholar |
[11] PL Arnold, IJ Casely, Chem Rev 2009, 109, 3599.
| Crossref | GoogleScholarGoogle Scholar | 19358527PubMed |
[12] R Shannon, Acta Cryst 1976, A32, 751.
| Crossref | GoogleScholarGoogle Scholar |
[13] S Caddick, FGN Cloke, PB Hitchcock, AK de, K Lewis, Angew Chem, Int Ed 2004, 43, 5824.
| Crossref | GoogleScholarGoogle Scholar |
[14] M Reiners, D Baabe, P Schweyen, M Freytag, PG Jones, MD Walter, Inorg Chim Acta 2014, 422, 167.
| Crossref | GoogleScholarGoogle Scholar |
[15] N Kuhn, T Kratz, Synthesis 1993, 1993, 561.
| Crossref | GoogleScholarGoogle Scholar |
[16] DJ Berg, CJ Burns, RA Andersen, A Zalkin, Organometallics 1989, 8, 1865.
| Crossref | GoogleScholarGoogle Scholar |
[17] WJ Evans, GW Rabe, JW Ziller, RJ Doedens, Inorg Chem 1994, 33, 2719.
| Crossref | GoogleScholarGoogle Scholar |
[18] M Glanz, S Dechert, H Schumann, D Wolff, J Springer, Z Anorg Allg Chem 2000, 626, 2467.
| Crossref | GoogleScholarGoogle Scholar |
[19] H Schumann, M Glanz, J Winterfeld, H Hemling, N Kuhn, T Kratz, Chem Ber 1994, 127, 2369.
| Crossref | GoogleScholarGoogle Scholar |
[20] W Xie, H Hu, C Cui, Angew Chem, Int Ed 2012, 51, 11141.
| Crossref | GoogleScholarGoogle Scholar |
[21] (a) AL Wayda, ML Kaplan, AM Lyons, RD Rogers, Polyhedron 1990, 9, 751.
| Crossref | GoogleScholarGoogle Scholar |
(b) GW Rabe, CS Strissel, LM Liable-Sands, TE Concolino, AL Rheingold, Inorg Chem 1999, 38, 3446.
| Crossref | GoogleScholarGoogle Scholar |
(c) D Hong, X Zhu, S Wang, Y Wei, S Zhou, Z Huang, S Zhu, R Wang, W Yue, X Mu, Dalton Trans 2019, 48, 5230.
| Crossref | GoogleScholarGoogle Scholar |
[22] GW Rabe, J Riede, A Schier, Main Group Chem 1996, 1, 273.
| Crossref | GoogleScholarGoogle Scholar |
[23] (a) J Li, J Hao, C Cui, Dalton Trans 2015, 44, 767.
| Crossref | GoogleScholarGoogle Scholar | 25407233PubMed |
(b) D Werner, GB Deacon, PC Junk, Inorg Chem 2019, 58, 1912.
| Crossref | GoogleScholarGoogle Scholar |
[24] (a) Y Li, C Pi, J Zhang, X Zhou, Z Chen, L Weng, Organometallics 2005, 24, 1982.
| Crossref | GoogleScholarGoogle Scholar |
(b) Z Zhang, L Zhang, Y Li, L Hong, Z Chen, X Zhou, Inorg Chem 2010, 49, 5715.
| Crossref | GoogleScholarGoogle Scholar |
[25] L Hintermann, Beilstein J Org Chem 2007, 3, 22.
| Crossref | GoogleScholarGoogle Scholar | 17725838PubMed |
[26] AJ Arduengo, H Bock, H Chen, M Denk, DA Dixon, JC Green, WA Herrmann, NL Jones, M Wagner, R West, J Am Chem Soc 1994, 116, 6641.
| Crossref | GoogleScholarGoogle Scholar |
[27] G Sheldrick, Acta Cryst C 2015, 71, 3.
| Crossref | GoogleScholarGoogle Scholar |