Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Coordination polymers based on aluminum and indium halides together with pyrazine

Thomas C. Schäfer A , Jonathan Becker A , Dominik Heuler A , Marcel T. Seuffert A , Alexander E. Sedykh A and Klaus Müller-Buschbaum https://orcid.org/0000-0002-2857-8379 A B *
+ Author Affiliations
- Author Affiliations

A Institute of Inorganic and Analytical Chemistry, Justus-Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany.

B Center for Materials Research (LaMa), Justus-Liebig University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany.

* Correspondence to: kmbac@uni-giessen.de

Handling Editor: George Koutsantonis

Australian Journal of Chemistry 75(9) 676-683 https://doi.org/10.1071/CH21317
Submitted: 1 December 2021  Accepted: 3 February 2022   Published: 7 April 2022

© 2022 The Author(s) (or their employer(s)). Published by CSIRO Publishing.

Abstract

Four structurally closely related one-dimensional coordination polymers (CPs) have been synthesised, constituted by pyrazine (pyz) and the group 13 metal halides AlCl3, AlI3, InBr3, and InI3. Three CPs are isotypic: CH21317_IE1.gif, CH21317_IE2.gif, CH21317_IE3.gif. Alike CH21317_IE4.gif, they form linear chains. Hereby, each M3+ ion is trigonal-bipyramidally coordinated by three halido ligands and two N-atoms of two pyz serving as linear nodes with twofold connectivity (2-c). The CPs were characterised by SCXRD, PXRD, elemental-analysis, simultaneous DTA/TG and IR-spectroscopy. In addition, two complexes [(AlCl3)2(pyz)5] and [(InI3)2(pyz)] with octahedrally coordinated Al3+ and unprecedented tetrahedrally coordinated In3+ ions were structurally characterised by SCXRD.

Keywords: aluminum, bromide, chloride, coordination polymer, group 13 elements, indium, iodide, N-ligands, Pyrazine.


References

[1]  Batten SR, Neville SM, Turner DR. Coordination Polymers. Design, Analysis and Application. Cambrige: R. Soc. Chem.; 2009. p. 424.
| Crossref |

[2]  C Janiak, Dalton Trans 2003, 14, 2781.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  C Janiak, JK Vieth, New J Chem 2010, 34, 2366.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  S Kitagawa, R Matsuda, Coord Chem Rev 2007, 251, 2490.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  SR Batten, NR Champness, X-M Chen, J Garcia-Martinez, S Kitagawa, L Öhrström, M O’Keeffe, M Paik Suh, J Reedijk, Pure Appl Chem 2013, 85, 1715.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  SR Batten, NR Champness, X-M Chen, J Garcia-Martinez, S Kitagawa, L Öhrström, M O’Keeffe, MP Suh, J Reedijk, CrystEngComm 2012, 14, 3001.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  S Bauer, N Stock, Chem Unserer Zeit 2008, 42, 12.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  G Férey, Chem Soc Rev 2008, 37, 191.
         | Crossref | GoogleScholarGoogle Scholar | 18197340PubMed |

[9]  S Kitagawa, K Uemura, Chem Soc Rev 2005, 34, 109.
         | Crossref | GoogleScholarGoogle Scholar | 15672175PubMed |

[10]  JR Long, OM Yaghi, Chem Soc Rev 2009, 38, 1213.
         | Crossref | GoogleScholarGoogle Scholar | 19384431PubMed |

[11]  AE Baumann, DA Burns, B Liu, VS Thoi, Commun Chem 2019, 2, 86.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  J Heine, K Müller-Buschbaum, Chem Soc Rev 2013, 42, 9232.
         | Crossref | GoogleScholarGoogle Scholar | 24077361PubMed |

[13]  S Kitagawa, R Kitaura, S-I Noro, Angew Chem Int Ed 2004, 43, 2334.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  M Kurmoo, Chem Soc Rev 2009, 38, 1353.
         | Crossref | GoogleScholarGoogle Scholar | 19384442PubMed |

[15]  C Wang, T Zhang, W Lin, Chem Rev 2012, 112, 1084.
         | Crossref | GoogleScholarGoogle Scholar | 22070202PubMed |

[16]  Q Wang, D Astruc, Chem Rev 2020, 120, 1438.
         | Crossref | GoogleScholarGoogle Scholar | 31246430PubMed |

[17]  IA Baburin, VA Blatov, L Carlucci, G Ciani, DM Proserpio, CrystEngComm 2008, 10, 1822.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  Batten SR. In: Gale PA, Steed JW, Editors. In Supramolecular Chemistry: From Molecules to Nanomaterials, Vol. 6. Chichester: Wiley; 2012. pp. 3107–3120.
| Crossref |

[19]  W Gebert, Acta Crystallogr, Sect B 1978, 34, 2958.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  Y-N Gong, D-C Zhong, T-B Lu, CrystEngComm 2016, 18, 2596.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  S Natarajan, P Mahata, Chem Soc Rev 2009, 38, 2304.
         | Crossref | GoogleScholarGoogle Scholar | 19623352PubMed |

[22]  M O’Keeffe, MA Peskov, SJ Ramsden, OM Yaghi, Acc Chem Res 2008, 41, 1782.
         | Crossref | GoogleScholarGoogle Scholar | 18834152PubMed |

[23]  LM Aguirre-Díaz, D Reinares-Fisac, M Iglesias, E Gutiérrez-Puebla, F Gándara, N Snejko, MÁ Monge, Coord Chem Rev 2017, 335, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  AV Desai, S Sharma, S Let, SK Ghosh, Coord Chem Rev 2019, 395, 146.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  JR Sorg, TC Schäfer, T Schneider, K Müller-Buschbaum, Z Anorg Allg Chem 2020, 646, 507.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  SC James, NC Norman, A Guy Orpen, J Starbuck, CrystEngComm 2000, 2, 67.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  AV Desai, S Sharma, A Roy, MM Shirolkar, SK Ghosh, Mol Syst Des Eng 2020, 5, 469.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  JM Harrowfield, H Miyamae, BW Skelton, AA Soudi, AH White, Aust J Chem 1996, 49, 1157.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  J-J Liu, Y Chen, M-J Lin, C-C Huang, W-X Dai, Dalton Trans 2016, 45, 6339.
         | Crossref | GoogleScholarGoogle Scholar | 26985714PubMed |

[30]  JR Sorg, T Schneider, L Wohlfarth, TC Schäfer, A Sedykh, K Müller-Buschbaum, Dalton Trans 2020, 49, 4904.
         | Crossref | GoogleScholarGoogle Scholar | 32232237PubMed |

[31]  JR Sorg, T Wehner, PR Matthes, R Sure, S Grimme, J Heine, K Müller-Buschbaum, Dalton Trans 2018, 47, 7669.
         | Crossref | GoogleScholarGoogle Scholar | 29766175PubMed |

[32]  AF Waters, AH White, Aust J Chem 1996, 49, 27.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  Schilling L-H, Reinsch H, Stock N. Synthesis, Structure, and Selected Properties of Aluminum-, Gallium-, and Indium-Based Metal–Organic Frameworks. Wiley; 2016. pp. 105–135,
| Crossref |

[34]  T Schäfer, K Müller-Buschbaum, Z. Anorg. Allg Chem 2018, 644, 1791.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  NY Gugin, A Virovets, E Peresypkina, EI Davydova, AY Timoshkin, CrystEngComm 2020, 22, 4531.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  J Heine, M Hołyńska, M Reuter, B Haas, S Chatterjee, M Koch, KI Gries, K Volz, S Dehnen, Cryst Growth Des 2013, 13, 1252.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  T Schäfer, AE Sedykh, J Becker, K Müller-Buschbaum, Z Anorg Allg Chem 2020, 646, 1555.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  TC Schäfer, J Becker, AE Sedykh, K Müller-Buschbaum, Z Anorg Allg Chem 2021, 647, 1227.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  SP Petrosyants, Russ J Inorg Chem 2013, 58, 1605.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  SP Petrosyants, AB Ilyukhin, Russ J Inorg Chem 2010, 55, 30.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  SP Petrosyants, AB Ilyukhin, Russ J Inorg Chem 2011, 56, 2047.
         | Crossref | GoogleScholarGoogle Scholar |

[42]  TN Sevastianova, EI Davydova, IV Kazakov, AY Timoshkin, Russ Chem Bull 2015, 64, 2523.
         | Crossref | GoogleScholarGoogle Scholar |

[43]  TN Sevastianova, M Bodensteiner, AF Maulieva, EI Davydova, AV Virovets, EV Peresypkina, G Balázs, C Graßl, M Seidl, M Scheer, G Frenking, EA Berezovskaya, IV Kazakov, OV Khoroshilova, AY Timoshkin, Dalton Trans 2015, 44, 20648.
         | Crossref | GoogleScholarGoogle Scholar | 26564471PubMed |

[44]  CR Samanamú, AF Richards, Polyhedron 2007, 26, 923.
         | Crossref | GoogleScholarGoogle Scholar |

[45]  TN Sevastianova, M Bodensteiner, AS Lisovenko, EI Davydova, M Scheer, TV Susliakova, IS Krasnova, AY Timoshkin, Dalton Trans 2013, 42, 11589.
         | Crossref | GoogleScholarGoogle Scholar | 23824052PubMed |

[46]  CR Samanamú, PM Lococo, AF Richards, Inorg Chim Acta 2007, 360, 4037.
         | Crossref | GoogleScholarGoogle Scholar |

[47]  LM Engelhardt, PC Junk, CL Raston, BW Skelton, AH White, Dalton Trans 1996, 3297.
         | Crossref | GoogleScholarGoogle Scholar |

[48]  I Krossing, H Nöth, H Schwenk-Kircher, T Seifert, C Tacke, Eur J Inorg Chem 1998, 1998, 1925.
         | Crossref | GoogleScholarGoogle Scholar |

[49]  RJ Baker, AJ Davies, C Jones, M Kloth, J Organomet Chem 2002, 656, 203.
         | Crossref | GoogleScholarGoogle Scholar |

[50]  P Peter, H Karl, WB Jan, Z Naturforsch B 1982, 37, 1312.
         | Crossref | GoogleScholarGoogle Scholar |

[51]  RI Walton, Chem Soc Rev 2002, 31, 230.
         | Crossref | GoogleScholarGoogle Scholar | 12164069PubMed |

[52]  J Heine, T Wehner, R Bertermann, A Steffen, K Müller-Buschbaum, Inorg Chem 2014, 53, 7197.
         | Crossref | GoogleScholarGoogle Scholar | 24963536PubMed |

[53]  G Sheldrick, Acta Crystallogr, Sect A 2008, 64, 112.
         | Crossref | GoogleScholarGoogle Scholar | 18156677PubMed |

[54]  G Sheldrick, Acta Crystallogr, Sect C 2015, 71, 3.
         | Crossref | GoogleScholarGoogle Scholar |

[55]  G Sheldrick, Acta Crystallogr, Sect A 2015, 71, 3.
         | Crossref | GoogleScholarGoogle Scholar |

[56]  OV Dolomanov, LJ Bourhis, RJ Gildea, JAK Howard, H Puschmann, J Appl Crystallogr 2009, 42, 339.
         | Crossref | GoogleScholarGoogle Scholar |

[57]  W Pennington, J Appl Crystallogr 1999, 32, 1028.
         | Crossref | GoogleScholarGoogle Scholar |

[58]  A Coelho, J Appl Crystallogr 2018, 51, 210.
         | Crossref | GoogleScholarGoogle Scholar |