Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Bismuth(iii) Thiophosphinates: Understanding How a Small Atomic Change Influences Antibacterial Activity and Mammalian Cell Viability*

Dimuthu C. Senevirathna A , Rebekah N. Duffin A B , Liam J. Stephens A , Megan E. Herdman A , Melissa V. Werrett https://orcid.org/0000-0001-6811-4504 A C and Philip C. Andrews A C
+ Author Affiliations
- Author Affiliations

A School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.

B Current address: Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, Vic. 3052, Australia.

C Corresponding authors. Email: melissa.werrett@monash.edu; phil.andrews@monash.edu

Australian Journal of Chemistry 73(12) 1226-1236 https://doi.org/10.1071/CH20169
Submitted: 28 May 2020  Accepted: 3 August 2020   Published: 18 September 2020

Abstract

Diphenylphosphinothioic acid (HSP(=O)Ph2) and diphenylphosphinodithioic acid (HSP(=S)Ph2) have been used to synthesise four BiIII complexes: 1 [Bi(SP(=O)Ph2)3], 2 [BiPh(SP(=O)Ph2)2], 3 [BiPh2(SP(=O)Ph2)], and 4 [Bi(SP(=S)Ph2)3], using BiPh3 and [Bi(OtBu)3] as bismuth sources. The complexes have been characterised by NMR spectroscopy, mass spectrometry, infrared spectroscopy, powder X-ray diffraction, and singe crystal X-ray crystallography (24). Biological studies indicated that despite complexes 2 and 3 reducing mammalian cell viability, their antibacterial activity provides a good degree of selectivity towards both Gram positive and Gram negative bacterial strains. The minimum inhibitory concentrations for complexes 2 and 3 are in the range of 0.52–5.5 µM towards the bacteria tested. Homoleptic complexes 1 and 4 were generally less active towards both bacterial and mammalian cells.


References

[1]  M. Ruck, F. Locherer, Coord. Chem. Rev. 2015, 285, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  P. J. Sadler, H. Li, H. Sun, Coord. Chem. Rev. 1999, 185–186, 689.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  K. H. Whitmire, in Encyclopedia of Inorganic and Bioinorganic Chemistry 2013, pp. 1–32 (John Wiley & Sons, Ltd: Chichester).

[4]  N. Yang, H. Sun, Coord. Chem. Rev. 2007, 251, 2354.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  R. N. Duffin, M. V. Werrett, P. C. Andrews, in Advances in Inorganic Chemistry – Medicinal Chemistry (Eds P. J. Sadler, R. van Eldik) 2020, Vol. 75, pp. 207–255 (Elsevier Inc.: Amsterdam).

[6]  Y. Yang, R. Ouyang, L. Xu, N. Guo, W. Li, K. Feng, L. Ouyang, Z. Yang, S. Zhou, Y. Miao, J. Coord. Chem. 2015, 68, 379.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  R. Wang, T.-P. Lai, P. Gao, H. Zhang, P.-L. Ho, P. C.-Y. Woo, G. Ma, R. Y.-T. Kao, H. Li, H. Sun, Nat. Commun. 2018, 9, 439.
         | Crossref | GoogleScholarGoogle Scholar | 29382822PubMed |

[8]  M. Busse, I. Trinh, P. C. Junk, R. L. Ferrero, P. C. Andrews, Chem. – Eur. J. 2013, 19, 5264.
         | Crossref | GoogleScholarGoogle Scholar | 23536213PubMed |

[9]  P. C. Andrews, M. Busse, G. B. Deacon, R. L. Ferrero, P. C. Junk, J. G. MacLellan, A. Vom, Dalton Trans. 2012, 41, 11798.
         | Crossref | GoogleScholarGoogle Scholar | 22903621PubMed |

[10]  A. Pathak, V. L. Blair, R. L. Ferrero, M. Mehring, P. C. Andrews, Chem. Commun. 2014, 50, 15232.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  A. Pathak, V. L. Blair, R. L. Ferrero, P. C. Junk, R. F. Tabor, P. C. Andrews, Dalton Trans. 2015, 44, 16903.
         | Crossref | GoogleScholarGoogle Scholar | 26352159PubMed |

[12]  A. Pathak, V. L. Blair, R. L. Ferrero, L. Kedzierski, P. C. Andrews, J. Inorg. Biochem. 2017, 177, 266.
         | Crossref | GoogleScholarGoogle Scholar | 28583712PubMed |

[13]  K. J. Burke, L. J. Stephens, M. V. Werrett, P. C. Andrews, Chem. – Eur. J. 2020, 26, 7657.
         | Crossref | GoogleScholarGoogle Scholar | 32297355PubMed |

[14]  M. V. Werrett, M. E. Herdman, R. Brammananth, U. Garusinghe, W. Batchelor, P. K. Crellin, R. L. Coppel, P. C. Andrews, Chem. – Eur. J. 2018, 24, 12938.
         | Crossref | GoogleScholarGoogle Scholar | 29911327PubMed |

[15]  M. E. Herdman, M. V. Werrett, R. N. Duffin, L. J. Stephens, R. Brammananth, R. L. Coppel, W. Batchelor, P. C. Andrews, Dalton Trans. 2020, 49, 7341.
         | Crossref | GoogleScholarGoogle Scholar | 32392274PubMed |

[16]  M. Maliha, M. Herdman, R. Brammananth, M. McDonald, R. Coppel, M. Werrett, P. Andrews, W. Batchelor, J. Clean. Prod. 2020, 246, 119016.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  H. a. Phillips, N. Burford, Inorg. Chem. 2008, 47, 2428.
         | Crossref | GoogleScholarGoogle Scholar | 18293918PubMed |

[18]  C. Wu, P. Domenico, D. J. Hassett, T. J. Beveridge, A. R. Hauser, J. A. Kazzaz, Am. J. Respir. Cell Mol. Biol. 2002, 26, 731.
         | Crossref | GoogleScholarGoogle Scholar | 12034573PubMed |

[19]  P. Domenico, J. Microbiol. Exp. 2015, 2, 9.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  P. Domenico, L. Baldassarri, P. E. Schoch, K. Kaehler, M. Sasatsu, B. A. Cunha, Antimicrob. Agents Chemother. 2001, 45, 1417.
         | Crossref | GoogleScholarGoogle Scholar | 11302804PubMed |

[21]  A. Luqman, V. L. Blair, R. Brammananth, P. K. Crellin, R. L. Coppel, P. C. Andrews, Chem. – Eur. J. 2014, 20, 14362.
         | Crossref | GoogleScholarGoogle Scholar | 25224757PubMed |

[22]  A. Luqman, V. L. Blair, R. Brammananth, P. K. Crellin, R. L. Coppel, P. C. Andrews, Eur. J. Inorg. Chem. 2016, 2738.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  A. Luqman, V. L. Blair, R. Brammananth, P. K. Crellin, R. L. Coppel, L. Kedzierski, P. C. Andrews, Eur. J. Inorg. Chem. 2015, 725.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  M. Joensson, M. Silvestru, A. Silvestru, Studia UBB Chemia 2006, 1, 83.

[25]  A. Müller, V. V. K. Rao, G. Klinksiek, Chem. Ber. 1971, 104, 1892.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  M. J. Begley, M. Nunn, D. B. Sowerby, J. Chem. Soc., Dalton Trans. 1986, 1031.

[27]  M. J. Begley, D. B. Sowerby, I. Haiduc, J. Chem. Soc., Dalton Trans. 1987, 145.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  C. Silvestru, I. Haiduc, K. H. Ebert, H. J. Breunig, D. B. Sowerby, J. Organomet. Chem. 1994, 468, 113.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  J. S. Casas, A. Sanchez, J. Sordo, E. M. Vazquez-Lopez, E. E. Castellano, J. Zukerman-Schpector, Polyhedron 1992, 11, 2889.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  J. S. Casas, M. S. García-Tasende, A. Sánchez, J. Sordo, E. M. Vázquez-López, Inorg. Chim. Acta 1997, 256, 211.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  J. Zukerman-Schpector, E. M. Vázquez-López, A. Sánchez, J. S. Casas, J. Sordo, J. Organomet. Chem. 1991, 405, 67.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  R. S. Z. Kowalski, N. A. Bailey, R. Mulvaney, H. Adams, D. A. O’Cleirigh, J. A. McCleverty, Transition Met. Chem. 1981, 6, 64.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  J. M. C. Alison, T. A. Stephenson, R. O. Gould, J. Chem. Soc. A 1971, 3690.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  R. A. Varga, C. Silvestru, Main Group Met. Chem. 2007, 30, 593833.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  J. S. Casas, A. Castiñeiras, M. C. Rodríguez-Argüelles, A. Sánchez, J. Sordo, A. Vázquez-López, E. M. Vázquez-López, J. Chem. Soc., Dalton Trans. 2000, 22, 4056.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  L. Y. Goh, W. K. Leong, P.-H. Leung, Z. Weng, I. Haiduc, J. Organomet. Chem. 2000, 607, 64.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  Y. Wang, Y. F. Shi, X. B. Li, X. C. Zou, Y. C. He, X. Wang, Jiegou Huaxue 2019, 38, 1216.

[38]  C. Silvestru, R. A. Toscano, J. Cardenas, R. Cea-Olivares, A. Silvestru, I. Haiduc, Polyhedron 1995, 14, 2231.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  F. T. Edelmann, M. Noltemeyer, I. Haiduc, C. Silvestru, R. Cea-Olivares, Polyhedron 1994, 13, 547.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  W. Kuchen, J. Metten, A. Judat, Chem. Ber. 1964, 97, 2306.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  K. Yoshida, Y. Shimoishi, K. Tôei, Bunseki Kagaku 1982, 31, 276.
         | Crossref | GoogleScholarGoogle Scholar |

[42]  R. Mattes, D. Ruhl, Z. Anorg. Allg. Chem. 1984, 508, 19.
         | Crossref | GoogleScholarGoogle Scholar |

[43]  M. J. Begley, D. B. Sowerby, D. M. Wesolek, C. Silvestru, I. Haiduc, J. Organomet. Chem. 1986, 316, 281.
         | Crossref | GoogleScholarGoogle Scholar |

[44]  A. Silvestru, C. Silvestru, I. Haiduc, J. E. Drake, J. Yang, F. Caruso, Polyhedron 1997, 16, 949.
         | Crossref | GoogleScholarGoogle Scholar |

[45]  C. Silvestru, I. Haiduc, F. Caruso, M. Rossi, B. Mahie, M. Gielen, J. Organomet. Chem. 1993, 448, 75.
         | Crossref | GoogleScholarGoogle Scholar |

[46]  K.-M. Mühlstephen, R. Mattes, Z. Anorg. Allg. Chem. 1983, 506, 115.
         | Crossref | GoogleScholarGoogle Scholar |

[47]  A. Bara, C. Socaciu, C. Silvestru, I. Haiduc, Anticancer Res. 1991, 11, 1651.
         | 1836124PubMed |

[48]  C. Socaciu, I. Pasca, C. Silvestru, A. Bara, I. Haiduc, Met. Based Drugs 1994, 1, 291.
         | Crossref | GoogleScholarGoogle Scholar | 18476242PubMed |

[49]  H. P. S. Chauhan, U. P. Singh, N. M. Shaik, S. Bhatiya, Main Group Met. Chem. 2007, 30, 279.

[50]  T. K. Pal, M. A. Alam, M. A. A. A. A. Islam, S. R. Paul, J. Sci. Res. 2012, 4, 427.
         | Crossref | GoogleScholarGoogle Scholar |

[51]  K. H. Ebert, R. E. Schulz, H. J. Breunig, C. Silvestru, I. Haiduc, J. Organomet. Chem. 1994, 470, 93.
         | Crossref | GoogleScholarGoogle Scholar |

[52]  G. Svensson, J. Albertsson, Acta Chem. Scand. 1989, 43, 511.
         | Crossref | GoogleScholarGoogle Scholar |

[53]  D. B. Sowerby, I. Haiduc, J. Chem. Soc., Dalton Trans. 1987, 195, 1257.
         | Crossref | GoogleScholarGoogle Scholar |

[54]  J. Wagner, M. Ciesielski, C. A. Fleckenstein, H. Denecke, F. Garlichs, A. Ball, M. Doering, Org. Process Res. Dev. 2013, 17, 47.
         | Crossref | GoogleScholarGoogle Scholar |

[55]  T. Hatanaka, R. Yuki, R. Saito, K. Sasaki, Org. Biomol. Chem. 2016, 14, 10589.
         | Crossref | GoogleScholarGoogle Scholar | 27805224PubMed |

[56]  P. C. Andrews, M. Busse, G. B. Deacon, R. L. Ferrero, P. C. Junk, K. K. Huynh, I. Kumar, J. G. Maclellan, Dalton Trans. 2010, 39, 9633.
         | Crossref | GoogleScholarGoogle Scholar | 20830402PubMed |

[57]  Search of the Cambridge Structural Database 2020, ConQuest Version 8.6, March 2020.

[58]  D. C. Senevirathna, M. V. Werrett, N. Pai, V. L. Blair, L. Spiccia, P. C. Andrews, Chem. – Eur. J. 2017, 23, 8171.
         | Crossref | GoogleScholarGoogle Scholar | 28470785PubMed |

[59]  E. M. Czekanska, in Methods in Molecular Biology (Ed. M. J. Stoddart) 2011, Vol 740, Ch. 5, pp. 27–32 (Springer Science + Business Media: Berlin).

[60]  R. N. Duffin, V. L. Blair, L. Kedzierski, P. C. Andrews, Eur. J. Med. Chem. 2020, 186, 111895.
         | Crossref | GoogleScholarGoogle Scholar | 31771825PubMed |

[61]  P. C. Andrews, R. Frank, P. C. Junk, L. Kedzierski, I. Kumar, J. G. MacLellan, J. Inorg. Biochem. 2011, 105, 454.
         | Crossref | GoogleScholarGoogle Scholar | 20851471PubMed |

[62]  L. J. Stephens, S. Munuganti, R. N. Duffin, M. V. Werrett, P. C. Andrews, Inorg. Chem. 2020, 59, 3494.
         | Crossref | GoogleScholarGoogle Scholar | 32129066PubMed |

[63]  R. D. Abughazaleh, T. S. Tracy, in Wiley StatsRef: Statistics Reference Online 2014, pp. 1–12 (John Wiley & Sons, Ltd: Chichester).

[64]  R. K. Harris, E. D. Becker, S. M. Cabral de Menezes, R. Goodfellow, P. Granger, Pure Appl. Chem. 2001, 73, 1795.
         | Crossref | GoogleScholarGoogle Scholar |

[65]  R. K. Harris, E. D. Becker, S. M. Cabral de Menezes, P. Granger, R. E. Hoffman, K. W. Zilm, Pure Appl. Chem. 2008, 80, 59.
         | Crossref | GoogleScholarGoogle Scholar |

[66]  D. H. R. Barton, N. Y. Bhatnagar, J.-P. Finet, W. B. Motherwell, Tetrahedron 1986, 42, 3111.
         | Crossref | GoogleScholarGoogle Scholar |

[67]  D. Mansfeld, Synthese und Charakterisierung neuartiger Bismutsilanolate, Bismut-oxo-cluster und Bismutkoordinationspolymere 2009, Ph.D. thesis, Technischen Universität Chemnitz, Germany.

[68]  G. M. Sheldrick, SADABS v2.30 2002 (University of Gottingen: Gottingen, Germany).

[69]  G. M. Sheldrick, Acta Crystallogr. A 2008, 64, 112.
         | Crossref | GoogleScholarGoogle Scholar | 18156677PubMed |

[70]  G. M. Sheldrick, Acta Crystallogr. C Struct. Chem. 2015, 71, 3.
         | Crossref | GoogleScholarGoogle Scholar | 25567568PubMed |

[71]  D. D. Oprian, in Photoreceptor Cells: Methods in Neurosciences (Ed. P. A. Hargrave) 1993, Vol. 15, pp. 301–306 (Academic Press Inc.): New York, NY.

[72]  Y. C. Ong, V. L. Blair, L. Kedzierski, P. C. Andrews, Dalton Trans. 2014, 43, 12904.
         | Crossref | GoogleScholarGoogle Scholar | 25019320PubMed |